IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i14p2250-d1699766.html
   My bibliography  Save this article

Reciprocal Theorems for Multi-Cost Problems with S -Type I Functionals

Author

Listed:
  • Savin Treanţă

    (Department Applied Mathematics, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania
    Academy of Romanian Scientists, 54 Splaiul Independentei, 050094 Bucharest, Romania
    Fundamental Sciences Applied in Engineering Research Center, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania)

  • Valeria Cîrlan

    (Department Applied Mathematics, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania)

  • Omar Mutab Alsalami

    (Department of Electrical Engineering, College of Engineering, Taif University, Taif 21944, Saudi Arabia)

Abstract

In this paper, for the considered multi-cost variational problem (P), we associate a dual model (D) in order to study and state the connections between the solution sets of these control problems. Thus, under S -type I assumptions associated with the integral functionals involved, we formulate and prove various reciprocal results, such as weak, strong, and converse-type dualities.

Suggested Citation

  • Savin Treanţă & Valeria Cîrlan & Omar Mutab Alsalami, 2025. "Reciprocal Theorems for Multi-Cost Problems with S -Type I Functionals," Mathematics, MDPI, vol. 13(14), pages 1-15, July.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:14:p:2250-:d:1699766
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/14/2250/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/14/2250/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ali Sadeghieh & Nader Kanzi & Giuseppe Caristi & David Barilla, 2022. "On stationarity for nonsmooth multiobjective problems with vanishing constraints," Journal of Global Optimization, Springer, vol. 82(4), pages 929-949, April.
    2. Le Thanh Tung, 2022. "Karush–Kuhn–Tucker optimality conditions and duality for multiobjective semi-infinite programming with vanishing constraints," Annals of Operations Research, Springer, vol. 311(2), pages 1307-1334, April.
    3. S. K. Mishra & Vinay Singh & Vivek Laha, 2016. "On duality for mathematical programs with vanishing constraints," Annals of Operations Research, Springer, vol. 243(1), pages 249-272, August.
    4. Khadija Khazafi & Norma Rueda & Per Enflo, 2010. "Sufficiency and duality for multiobjective control problems under generalized (B, ρ)-type I functions," Journal of Global Optimization, Springer, vol. 46(1), pages 111-132, January.
    5. Tamanna Yadav & S. K. Gupta & Sumit Kumar, 2024. "Optimality analysis and duality conditions for a class of conic semi-infinite program having vanishing constraints," Annals of Operations Research, Springer, vol. 340(2), pages 1091-1123, September.
    6. K. Khazafi & N. Rueda, 2009. "Multiobjective Variational Programming under Generalized Type I Univexity," Journal of Optimization Theory and Applications, Springer, vol. 142(2), pages 363-376, August.
    7. Tadeusz Antczak, 2015. "Sufficient optimality criteria and duality for multiobjective variational control problems with $$G$$ G -type I objective and constraint functions," Journal of Global Optimization, Springer, vol. 61(4), pages 695-720, April.
    8. Najeeb Abdulaleem & Savin Treanţă, 2023. "Optimality conditions and duality for E-differentiable multiobjective programming involving V-E-type I functions," OPSEARCH, Springer;Operational Research Society of India, vol. 60(4), pages 1824-1843, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Balendu Bhooshan Upadhyay & Arnav Ghosh, 2023. "On Constraint Qualifications for Mathematical Programming Problems with Vanishing Constraints on Hadamard Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 199(1), pages 1-35, October.
    2. Tadeusz Antczak, 2015. "Sufficient optimality criteria and duality for multiobjective variational control problems with $$G$$ G -type I objective and constraint functions," Journal of Global Optimization, Springer, vol. 61(4), pages 695-720, April.
    3. Tamanna Yadav & S. K. Gupta & Sumit Kumar, 2024. "Optimality analysis and duality conditions for a class of conic semi-infinite program having vanishing constraints," Annals of Operations Research, Springer, vol. 340(2), pages 1091-1123, September.
    4. Balendu Bhooshan Upadhyay & Arnav Ghosh & Savin Treanţă & Jen-Chih Yao, 2024. "Constraint Qualifications and Optimality Conditions for Multiobjective Mathematical Programming Problems with Vanishing Constraints on Hadamard Manifolds," Mathematics, MDPI, vol. 12(19), pages 1-24, September.
    5. Vivek Laha & Harsh Narayan Singh, 2023. "On quasidifferentiable mathematical programs with equilibrium constraints," Computational Management Science, Springer, vol. 20(1), pages 1-20, December.
    6. Tadeusz Antczak, 2023. "On directionally differentiable multiobjective programming problems with vanishing constraints," Annals of Operations Research, Springer, vol. 328(2), pages 1181-1212, September.
    7. Savin Treanţă, 2021. "Duality Theorems for ( ρ , ψ , d )-Quasiinvex Multiobjective Optimization Problems with Interval-Valued Components," Mathematics, MDPI, vol. 9(8), pages 1-12, April.
    8. Le Thanh Tung, 2022. "Karush–Kuhn–Tucker optimality conditions and duality for multiobjective semi-infinite programming with vanishing constraints," Annals of Operations Research, Springer, vol. 311(2), pages 1307-1334, April.
    9. Tadeusz Antczak, 2022. "Optimality conditions and Mond–Weir duality for a class of differentiable semi-infinite multiobjective programming problems with vanishing constraints," 4OR, Springer, vol. 20(3), pages 417-442, September.
    10. Ali Sadeghieh & Nader Kanzi & Giuseppe Caristi & David Barilla, 2022. "On stationarity for nonsmooth multiobjective problems with vanishing constraints," Journal of Global Optimization, Springer, vol. 82(4), pages 929-949, April.
    11. Tadeusz Antczak, 2014. "On efficiency and mixed duality for a new class of nonconvex multiobjective variational control problems," Journal of Global Optimization, Springer, vol. 59(4), pages 757-785, August.
    12. Promila Kumar & Bharti Sharma & Jyoti Dagar, 2017. "Multi-objective semi-infinite variational problem and generalized invexity," OPSEARCH, Springer;Operational Research Society of India, vol. 54(3), pages 580-597, September.
    13. Bhuwan Chandra Joshi & Murari Kumar Roy & Abdelouahed Hamdi, 2024. "On Semi-Infinite Optimization Problems with Vanishing Constraints Involving Interval-Valued Functions," Mathematics, MDPI, vol. 12(7), pages 1-19, March.
    14. Hui Huang & Haole Zhu, 2022. "Stationary Condition for Borwein Proper Efficient Solutions of Nonsmooth Multiobjective Problems with Vanishing Constraints," Mathematics, MDPI, vol. 10(23), pages 1-18, December.
    15. Savin Treanţă, 2021. "On a Dual Pair of Multiobjective Interval-Valued Variational Control Problems," Mathematics, MDPI, vol. 9(8), pages 1-11, April.
    16. Savin Treanţă & Tareq Saeed, 2023. "Characterization Results of Solution Sets Associated with Multiple-Objective Fractional Optimal Control Problems," Mathematics, MDPI, vol. 11(14), pages 1-13, July.
    17. Qingjie Hu & Jiguang Wang & Yu Chen, 2020. "New dualities for mathematical programs with vanishing constraints," Annals of Operations Research, Springer, vol. 287(1), pages 233-255, April.
    18. Sajjad Kazemi & Nader Kanzi, 2018. "Constraint Qualifications and Stationary Conditions for Mathematical Programming with Non-differentiable Vanishing Constraints," Journal of Optimization Theory and Applications, Springer, vol. 179(3), pages 800-819, December.
    19. Kin Keung Lai & Shashi Kant Mishra & Sanjeev Kumar Singh & Mohd Hassan, 2022. "Stationary Conditions and Characterizations of Solution Sets for Interval-Valued Tightened Nonlinear Problems," Mathematics, MDPI, vol. 10(15), pages 1-16, August.
    20. Yogendra Pandey & S. K. Mishra, 2018. "Optimality conditions and duality for semi-infinite mathematical programming problems with equilibrium constraints, using convexificators," Annals of Operations Research, Springer, vol. 269(1), pages 549-564, October.

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:14:p:2250-:d:1699766. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.