Author
Listed:
- Yue Yu
(ZJU-UIUC Institute, Haining 314400, China)
- Pavel Loskot
(ZJU-UIUC Institute, Haining 314400, China)
- Wenbin Zhang
(AI Research Center, Midea Group, Shanghai 201702, China)
- Qi Zhang
(AI Research Center, Midea Group, Shanghai 201702, China)
- Yu Gao
(AI Research Center, Midea Group, Shanghai 201702, China)
Abstract
Forecasting multivariate time series is a pivotal task in controlling multi-sensor systems. The joint forecasting of all channels may be too complex, whereas forecasting the channels independently may cause important spatial inter-dependencies to be overlooked. In this paper, we improve the performance of single-channel forecasting algorithms by designing an interpretable front-end that extracts the spatial–temporal components from the input multivariate time series. Specifically, the multivariate samples are first segmented into equal-sized matrix symbols. The symbols are decomposed into the frequency-separated Intrinsic Mode Functions (IMFs) using a 2D Empirical-Mode Decomposition (EMD). The IMF components in each channel are then forecasted independently using relatively simple univariate predictors (UPs) such as DLinear, FITS, and TCN. The symbol size is determined to maximize the temporal stationarity of the EMD residual trend using Bayesian optimization. In addition, since the overall performance is usually dominated by a few of the weakest predictors, it is shown that the forecasting accuracy can be further improved by reordering the corresponding channels to make more correlated channels more adjacent. However, channel reordering requires retraining the affected predictors. The main advantage of the proposed forecasting framework for multivariate time series is that it retains the interpretability and simplicity of single-channel forecasting methods while improving their accuracy by capturing information about the spatial-channel dependencies. This has been demonstrated numerically assuming a 64-channel EEG dataset.
Suggested Citation
Yue Yu & Pavel Loskot & Wenbin Zhang & Qi Zhang & Yu Gao, 2025.
"A Spatial–Temporal Time Series Decomposition for Improving Independent Channel Forecasting,"
Mathematics, MDPI, vol. 13(14), pages 1-24, July.
Handle:
RePEc:gam:jmathe:v:13:y:2025:i:14:p:2221-:d:1697365
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:14:p:2221-:d:1697365. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.