Author
Listed:
- Sheeja Rani S
(Computer Science and Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates)
- Raafat Aburukba
(Computer Science and Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates)
Abstract
Cloud computing is a virtualized and distributed computing model that provides resources and services based on demand and self-service. Resource failure is one of the major challenges in cloud computing, and there is a need for fault tolerance mechanisms. This paper addresses the issue by proposing a multi-objective radial kernelized federated learning-based fault-tolerant scheduling (MRKFL-FTS) technique for allocating multiple IoT requests or user tasks to virtual machines in cloud IoT-based environments. The MRKFL-FTS technique includes Cloud RAN (C-RAN) and Virtual RAN (V-RAN). The proposed MRKFL-FTS technique comprises four entities, namely, IoT devices, cloud servers, task assigners, and virtual machines. Each IoT device generates several service requests and sends them to the control server. At first, radial kernelized support vector regression is applied in the local training model to identify resource-efficient virtual machines. After that, locally trained models are combined, and the resulting model is fed into the global aggregation model. Finally, using a weighted round-robin method, the task assigner allocates incoming IoT service requests to virtual machines. This approach improves resource awareness and fault tolerance in scheduling. The quantitatively analyzed results show that the MRKFL-FTS technique achieved an 8% improvement in task scheduling efficiency and fault prediction accuracy, a 36% improvement in throughput, and a 14% reduction in makespan and time complexity. In addition, the MRKFL-FTS technique resulted in a 13% reduction in response time. The energy consumption of the MRKFL-FTS technique is reduced by 17% and increases the scalability by 8% compared to conventional scheduling techniques.
Suggested Citation
Sheeja Rani S & Raafat Aburukba, 2025.
"Federated Learning-Driven IoT Request Scheduling for Fault Tolerance in Cloud Data Centers,"
Mathematics, MDPI, vol. 13(13), pages 1-46, July.
Handle:
RePEc:gam:jmathe:v:13:y:2025:i:13:p:2198-:d:1695305
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:13:p:2198-:d:1695305. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.