IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i13p2175-d1694042.html
   My bibliography  Save this article

Binary Chaotic White Shark Optimizer for the Unicost Set Covering Problem

Author

Listed:
  • Pablo Zúñiga-Valenzuela

    (Escuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2241, Valparaíso 2362807, Chile)

  • Broderick Crawford

    (Escuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2241, Valparaíso 2362807, Chile)

  • Felipe Cisternas-Caneo

    (Escuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2241, Valparaíso 2362807, Chile)

  • Eduardo Rodriguez-Tello

    (Cinvestav Unidad Tamaulipas, Km. 5.5 Carretera Victoria-Soto La Marina, Victoria 87130, Tamaulipas, Mexico)

  • Ricardo Soto

    (Escuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2241, Valparaíso 2362807, Chile)

  • José Barrera-Garcia

    (Escuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2241, Valparaíso 2362807, Chile
    Escuela de Negocios y Economía, Pontificia Universidad Católica de Valparaíso, Amunátegui 1838, Viña del Mar 2580129, Chile)

  • Fernando Lepe-Silva

    (Escuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2241, Valparaíso 2362807, Chile)

Abstract

The Unicost Set Covering Problem (USCP), an NP-hard combinatorial optimization challenge, demands efficient methods to minimize the number of sets covering a universe. This study introduces a binary White Shark Optimizer (WSO) enhanced with V3 transfer functions, elitist binarization, and chaotic maps. To evaluate algorithm performance, we employ the Relative Percentage Deviation (RPD), which measures the percentage difference between the obtained solutions and optimal values. Our approach achieves outstanding results on six benchmark instances: WSO-ELIT_CIRCLE delivers an RPD of 0.7% for structured instances, while WSO-ELIT_SINU attains an RPD of 0.96% in cyclic instances, showing empirical improvements over standard methods. Experimental results demonstrate that circle chaotic maps excel in structured problems, while sinusoidal maps perform optimally in cyclic instances, with observed improvements up to 7.31% over baseline approaches. Diversity and convergence analyses show structured instances favor exploitation-driven strategies, whereas cyclic instances benefit from adaptive exploration. This work establishes WSO as a robust metaheuristic for USCP, with applications in resource allocation and network design.

Suggested Citation

  • Pablo Zúñiga-Valenzuela & Broderick Crawford & Felipe Cisternas-Caneo & Eduardo Rodriguez-Tello & Ricardo Soto & José Barrera-Garcia & Fernando Lepe-Silva, 2025. "Binary Chaotic White Shark Optimizer for the Unicost Set Covering Problem," Mathematics, MDPI, vol. 13(13), pages 1-39, July.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:13:p:2175-:d:1694042
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/13/2175/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/13/2175/
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:13:p:2175-:d:1694042. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.