IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i13p2059-d1684382.html
   My bibliography  Save this article

Markov-Chain Perturbation and Approximation Bounds in Stochastic Biochemical Kinetics

Author

Listed:
  • Alexander Y. Mitrophanov

    (Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, MD 21702, USA)

Abstract

Markov chain perturbation theory is a rapidly developing subfield of the theory of stochastic processes. This review outlines emerging applications of this theory in the analysis of stochastic models of chemical reactions, with a particular focus on biochemistry and molecular biology. We begin by discussing the general problem of approximate modeling in stochastic chemical kinetics. We then briefly review some essential mathematical results pertaining to perturbation bounds for continuous-time Markov chains, emphasizing the relationship between robustness under perturbations and the rate of exponential convergence to the stationary distribution. We illustrate the use of these results to analyze stochastic models of biochemical reactions by providing concrete examples. Particular attention is given to fundamental problems related to approximation accuracy in model reduction. These include the partial thermodynamic limit, the irreversible-reaction limit, parametric uncertainty analysis, and model reduction for linear reaction networks. We conclude by discussing generalizations and future developments of these methodologies, such as the need for time-inhomogeneous Markov models.

Suggested Citation

  • Alexander Y. Mitrophanov, 2025. "Markov-Chain Perturbation and Approximation Bounds in Stochastic Biochemical Kinetics," Mathematics, MDPI, vol. 13(13), pages 1-20, June.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:13:p:2059-:d:1684382
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/13/2059/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/13/2059/
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:13:p:2059-:d:1684382. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.