IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i11p1884-d1671891.html
   My bibliography  Save this article

Stress Estimation in Viscous Flows Using an Iterative Tikhonov Regularized Stokes Inverse Model

Author

Listed:
  • Yuanhao Gao

    (Department of Fintech, Shanghai Normal University Tianhua College, Shanghai 201815, China)

  • Yang Wang

    (School of Finance and Business, Shanghai Normal University, Shanghai 200234, China)

  • Jizhou Zhang

    (School of Finance and Business, Shanghai Normal University, Shanghai 200234, China)

Abstract

In this paper, we propose and develop a stationary Stokes Inverse Model (SIM) to estimate the stress distributions that are difficult to measure directly in flows. We estimate the driving stresses from the velocities by solving the inverse problem governed by Stokes equations under iterative Tikhonov (IT) regularization. We investigate the heuristic L-curve criterion to determine the proper regularization parameter. The solution existence and uniqueness for the Stokes inverse problem have been analyzed. We also conducted convergence analysis and error estimation for perturbed data, providing a fast and stable convergence. The finite element method is applied to the numerical approach. Following the theoretical investigation and formulation, we validate the model and demonstrate that the velocity data closely match the velocity fields that were reconstructed using the computed stress distributions. In particular, the proposed SIM can be used to reliably derive the stress distributions for the flows governed by the Stokes equations with small Reynolds number. Additionally, the model is robust to a certain number of perturbations, which enables the precise and effective estimation of the stress distributions. The proposed stationary SIM may be widely applicable in the estimation of stresses from experimental velocity fields in engineering and biological applications.

Suggested Citation

  • Yuanhao Gao & Yang Wang & Jizhou Zhang, 2025. "Stress Estimation in Viscous Flows Using an Iterative Tikhonov Regularized Stokes Inverse Model," Mathematics, MDPI, vol. 13(11), pages 1-21, June.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:11:p:1884-:d:1671891
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/11/1884/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/11/1884/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. M. Hanke & C. W. Groetsch, 1998. "Nonstationary Iterated Tikhonov Regularization," Journal of Optimization Theory and Applications, Springer, vol. 98(1), pages 37-53, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yan, Xiong-bin & Zhang, Zheng-qiang & Wei, Ting, 2022. "Simultaneous inversion of a time-dependent potential coefficient and a time source term in a time fractional diffusion-wave equation," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    2. Buccini, Alessandro & Park, Yonggi & Reichel, Lothar, 2018. "Numerical aspects of the nonstationary modified linearized Bregman algorithm," Applied Mathematics and Computation, Elsevier, vol. 337(C), pages 386-398.
    3. Mittal, Gaurav, 2024. "Nonstationary iterated frozen Tikhonov regularization with uniformly convex penalty terms for solving inverse problems," Applied Mathematics and Computation, Elsevier, vol. 468(C).
    4. Reddy, G.D., 2019. "A class of parameter choice rules for stationary iterated weighted Tikhonov regularization scheme," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 464-476.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:11:p:1884-:d:1671891. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.