IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i11p1818-d1667564.html
   My bibliography  Save this article

Algorithm for Generating Bifurcation Diagrams Using Poincaré Intersection Plane

Author

Listed:
  • Luis Javier Ontañón-García

    (Coordinación Académica Región Altiplano Oeste, Universidad Autónoma de San Luis Potosí, Carretera a Santo Domingo 200, Salinas de Hidalgo 78600, SLP, Mexico)

  • Juan Gonzalo Barajas-Ramírez

    (División de Control y Sistemas Dinámicos, Instituto Potosino de Investigación Científica y Tecnológica A.C. (IPICyT), Camino a la Presa San José 2255, Lomas 4ta. Sección, San Luis Potosí 78216, SLP, Mexico)

  • Eric Campos-Cantón

    (División de Control y Sistemas Dinámicos, Instituto Potosino de Investigación Científica y Tecnológica A.C. (IPICyT), Camino a la Presa San José 2255, Lomas 4ta. Sección, San Luis Potosí 78216, SLP, Mexico)

  • Daniel Alejandro Magallón-García

    (Coordinación Académica Región Altiplano Oeste, Universidad Autónoma de San Luis Potosí, Carretera a Santo Domingo 200, Salinas de Hidalgo 78600, SLP, Mexico)

  • César Arturo Guerra-García

    (Coordinación Académica Región Altiplano Oeste, Universidad Autónoma de San Luis Potosí, Carretera a Santo Domingo 200, Salinas de Hidalgo 78600, SLP, Mexico)

  • José Ricardo Cuesta-García

    (Applied Physics Division, Department of Electronics and Telecommunications, CICESE Research Center, Carr. Ensenada-Tijuana 3918, Zona Playitas, Ensenada, Ensenada 22860, BC, Mexico)

  • Jonatan Pena-Ramirez

    (Applied Physics Division, Department of Electronics and Telecommunications, CICESE Research Center, Carr. Ensenada-Tijuana 3918, Zona Playitas, Ensenada, Ensenada 22860, BC, Mexico)

  • José Luis Echenausía-Monroy

    (Applied Physics Division, Department of Electronics and Telecommunications, CICESE Research Center, Carr. Ensenada-Tijuana 3918, Zona Playitas, Ensenada, Ensenada 22860, BC, Mexico)

Abstract

In the study of dynamic systems, bifurcation diagrams are a very popular graphical tool for studying stability and nonlinear changes in behavior. They are instrumental in analyzing the system’s response to parameter changes. These diagrams show the system’s various dynamic patterns and phase transitions by plotting the relationship between the system response and the parameters. This paper presents a computational algorithm for studying bifurcations in dynamic systems, especially for systems with chaotic behavior that depends on parameter changes. Depending on the type of system to be analyzed, the following two strategies for computing bifurcation diagrams are described: (i) detecting crossing points through the Poincaré plane and (ii) the identification of local maxima (or minima) in one of the system solutions. In addition, this paper presents a method for implementing parallel computation in MATLAB using the Parallel Computing Toolbox from MathWorks, which significantly reduces the computational time required to generate bifurcation diagrams. This work contributes to the study of dynamic systems by providing the reader with accessible tools for studying any dynamic system under established standards and reducing the computational time required for these types of studies by implementing these algorithms utilizing the multi-core processors found in modern computers.

Suggested Citation

  • Luis Javier Ontañón-García & Juan Gonzalo Barajas-Ramírez & Eric Campos-Cantón & Daniel Alejandro Magallón-García & César Arturo Guerra-García & José Ricardo Cuesta-García & Jonatan Pena-Ramirez & Jos, 2025. "Algorithm for Generating Bifurcation Diagrams Using Poincaré Intersection Plane," Mathematics, MDPI, vol. 13(11), pages 1-20, May.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:11:p:1818-:d:1667564
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/11/1818/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/11/1818/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:11:p:1818-:d:1667564. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.