IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i11p1789-d1665793.html
   My bibliography  Save this article

Optimal Tuning of Robot–Environment Interaction Controllers via Differential Evolution: A Case Study on (3,0) Mobile Robots

Author

Listed:
  • Jesús Aldo Paredes-Ballesteros

    (Centro de Innovación y Desarrollo Tecnológico en Cómputo, Red de Expertos en Robótica y Mecatrónica, Instituto Politécnico Nacional, Mexico City 07700, Mexico)

  • Miguel Gabriel Villarreal-Cervantes

    (Centro de Innovación y Desarrollo Tecnológico en Cómputo, Red de Expertos en Robótica y Mecatrónica, Instituto Politécnico Nacional, Mexico City 07700, Mexico)

  • Saul Enrique Benitez-Garcia

    (Centro de Innovación y Desarrollo Tecnológico en Cómputo, Red de Expertos en Robótica y Mecatrónica, Instituto Politécnico Nacional, Mexico City 07700, Mexico)

  • Alejandro Rodríguez-Molina

    (Colegio de Ciencia y Tecnología, Universidad Autónoma de la Ciudad de México, Mexico City 06720, Mexico)

  • Alam Gabriel Rojas-López

    (Centro de Innovación y Desarrollo Tecnológico en Cómputo, Red de Expertos en Robótica y Mecatrónica, Instituto Politécnico Nacional, Mexico City 07700, Mexico)

  • Victor Manuel Silva-García

    (Centro de Innovación y Desarrollo Tecnológico en Cómputo, Red de Expertos en Robótica y Mecatrónica, Instituto Politécnico Nacional, Mexico City 07700, Mexico)

Abstract

Robotic systems operating in complex environments require optimized tuned interaction controllers to ensure accurate task execution while maintaining smooth and safe behavior. This paper presents a scalarized multi-objective tuning approach based on Differential Evolution (DE) to optimize robot–environment interaction control. The method balances trajectory tracking accuracy and control smoothness using repulsive forces derived from potential fields modeled as virtual springs. The approach is validated on a (3,0) omnidirectional mobile robot navigating predefined trajectories with obstacles. A comparative study of five DE variants shows that DE/best/1/bin and DE/best/1/exp offer the best performance. Simulation and experimental results, including validation with an actual force sensor, confirm the method’s effectiveness and applicability in scenarios with limited sensing capabilities or model uncertainty.

Suggested Citation

  • Jesús Aldo Paredes-Ballesteros & Miguel Gabriel Villarreal-Cervantes & Saul Enrique Benitez-Garcia & Alejandro Rodríguez-Molina & Alam Gabriel Rojas-López & Victor Manuel Silva-García, 2025. "Optimal Tuning of Robot–Environment Interaction Controllers via Differential Evolution: A Case Study on (3,0) Mobile Robots," Mathematics, MDPI, vol. 13(11), pages 1-28, May.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:11:p:1789-:d:1665793
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/11/1789/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/11/1789/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:11:p:1789-:d:1665793. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.