IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i10p1621-d1656344.html
   My bibliography  Save this article

Denoising Autoencoder and Contrast Enhancement for RGB and GS Images with Gaussian Noise

Author

Listed:
  • Armando Adrián Miranda-González

    (Escuela Superior de Ingeniería Mecánica y Eléctrica Unidad Zacatenco Sección de Estudios de Posgrado e Investigación, Instituto Politécnico Nacional, Mexico City 07738, Mexico)

  • Alberto Jorge Rosales-Silva

    (Escuela Superior de Ingeniería Mecánica y Eléctrica Unidad Zacatenco Sección de Estudios de Posgrado e Investigación, Instituto Politécnico Nacional, Mexico City 07738, Mexico)

  • Dante Mújica-Vargas

    (Departamento de Ciencias Computacionales, Tecnológico Nacional de México, Cuernavaca 62490, Mexico)

  • Edwards Ernesto Sánchez-Ramírez

    (Instituto de Investigación y Desarrollo Tecnológico de la Armada de México, Veracruz 95269, Mexico)

  • Juan Pablo Francisco Posadas-Durán

    (Escuela Superior de Ingeniería Mecánica y Eléctrica Unidad Zacatenco Sección de Estudios de Posgrado e Investigación, Instituto Politécnico Nacional, Mexico City 07738, Mexico)

  • Dilan Uriostegui-Hernandez

    (Escuela Superior de Ingeniería Mecánica y Eléctrica Unidad Zacatenco Sección de Estudios de Posgrado e Investigación, Instituto Politécnico Nacional, Mexico City 07738, Mexico)

  • Erick Velázquez-Lozada

    (Escuela Superior de Ingeniería Mecánica y Eléctrica Unidad Zacatenco Sección de Estudios de Posgrado e Investigación, Instituto Politécnico Nacional, Mexico City 07738, Mexico)

  • Francisco Javier Gallegos-Funes

    (Escuela Superior de Ingeniería Mecánica y Eléctrica Unidad Zacatenco Sección de Estudios de Posgrado e Investigación, Instituto Politécnico Nacional, Mexico City 07738, Mexico)

Abstract

Robust image processing systems require input images that closely resemble real-world scenes. However, external factors, such as adverse environmental conditions or errors in data transmission, can alter the captured image, leading to information loss. These factors may include poor lighting conditions at the time of image capture or the presence of noise, necessitating procedures to restore the data to a representation as close as possible to the real scene. This research project proposes an architecture based on an autoencoder capable of handling both poor lighting conditions and noise in digital images simultaneously, rather than processing them separately. The proposed methodology has been demonstrated to outperform competing techniques specialized in noise reduction or contrast enhancement. This is supported by both objective numerical metrics and visual evaluations using a validation set with varying lighting characteristics. The results indicate that the proposed methodology effectively restores images by improving contrast and reducing noise without requiring separate processing steps.

Suggested Citation

  • Armando Adrián Miranda-González & Alberto Jorge Rosales-Silva & Dante Mújica-Vargas & Edwards Ernesto Sánchez-Ramírez & Juan Pablo Francisco Posadas-Durán & Dilan Uriostegui-Hernandez & Erick Velázque, 2025. "Denoising Autoencoder and Contrast Enhancement for RGB and GS Images with Gaussian Noise," Mathematics, MDPI, vol. 13(10), pages 1-27, May.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:10:p:1621-:d:1656344
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/10/1621/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/10/1621/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:10:p:1621-:d:1656344. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.