Author
Listed:
- Yongxin Qu
(Key Laboratory of High Efficiency and Clean Mechanical Manufacture of MOE, School of Mechanical Engineering, Shandong University, Jinan 250061, China)
- Yonghui Zhou
(Key Laboratory of High Efficiency and Clean Mechanical Manufacture of MOE, School of Mechanical Engineering, Shandong University, Jinan 250061, China)
- Yunfeng Luo
(Key Laboratory of High Efficiency and Clean Mechanical Manufacture of MOE, School of Mechanical Engineering, Shandong University, Jinan 250061, China)
Abstract
For topology optimization problems under harmonic excitation in a frequency band, a large number of displacement and adjoint displacement vectors for different frequencies need to be computed. This leads to an unbearable computational cost, especially for large-scale problems. An effective approach, the Second-Order Arnoldi (SOAR) method, effectively solves the response and adjoint equations by projecting the original model to a reduced order model. The SOAR method generalizes the well-known Krylov subspace in a specified frequency point and can give accurate solutions for the frequencies near the specified point by using only a few basis vectors. However, for a wide frequency band, more expansion points are needed to obtain the required accuracy. This brings up the question of how many points are needed for an arbitrary frequency band. The traditional reduced order method improves the accuracy by uniformly increasing the expansion points. However, this leads to the redundancy of expansion points, as some frequency bands require more expansion points while others only need a few. In this paper, a bisection-based adaptive SOAR method (ASOAR), in which the points are added adaptively based on a local error estimation function, is developed to solve this problem. In this way, the optimal number and position of expansion points are adaptively determined, which avoids the insufficient efficiency or accuracy caused by too many or too few points in the traditional strategy where the expansion points are uniformly distributed. Compared to the SOAR, the ASOAR can deal with wide low/mid-frequency bands both for response and adjoint equations with high precision and efficiency. Numerical examples show the validation and effectiveness of the proposed method.
Suggested Citation
Yongxin Qu & Yonghui Zhou & Yunfeng Luo, 2025.
"Structural Topology Optimization for Frequency Response Problems Using Adaptive Second-Order Arnoldi Method,"
Mathematics, MDPI, vol. 13(10), pages 1-16, May.
Handle:
RePEc:gam:jmathe:v:13:y:2025:i:10:p:1583-:d:1653896
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:10:p:1583-:d:1653896. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.