IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i4p552-d1337367.html
   My bibliography  Save this article

Pooled Steganalysis via Model Discrepancy

Author

Listed:
  • Jiang Yu

    (Faculty of Business Information, Shanghai Business School, Shanghai 200235, China)

  • Jing Zhang

    (Faculty of Business Information, Shanghai Business School, Shanghai 200235, China)

  • Fengyong Li

    (College of Computer Science and Technology, Shanghai University of Electric Power, Shanghai 201306, China)

Abstract

Pooled steganalysis aims to discover the guilty actor(s) among multiple normal actor(s). Existing techniques mainly rely on the high-dimension and time-consuming features. Moreover, the minor feature distance between cover and stego is detrimental to pooled steganalysis. To overcome these issues, this paper focuses on the discrepancy of the statistical characteristics of transmitted multiple images and designs a model-based effective pooled steganalysis strategy. Facing the public and monitored channel, without using the feature extractions, pooled steganalysis collects a set of images transmitted by a suspicious actor and use the corresponding distortion values as the statistic representation of the selected image set. Specifically, the normalized distortion of the suspicious image set generated via normal/guilty actor(s) is modelled as a normal distribution, and we apply maximum likelihood estimation (MLE) to estimate the parameter (cluster center) of the distribution by which we can represent the defined model. Considering the tremendous distortion difference between normal and stego image sets, we can deduce that the constructed model can effectively discover and reveal the existence of abnormal behavior of guilty actors. To show the discrepancy of different models, employing the logistic function and likelihood ratio test (LRT), we construct a new detector by which the ratio of cluster centers is turned into a probability. Depending on the generated probability and an optimal threshold, we make a judgment on whether the dubious actor is normal or guilty. Extensive experiments demonstrate that, compared to existing pooled steganalysis techniques, the proposed scheme exhibits great detection performance on the guilty actor(s) with lower complexity.

Suggested Citation

  • Jiang Yu & Jing Zhang & Fengyong Li, 2024. "Pooled Steganalysis via Model Discrepancy," Mathematics, MDPI, vol. 12(4), pages 1-15, February.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:4:p:552-:d:1337367
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/4/552/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/4/552/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:4:p:552-:d:1337367. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.