IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i15p2333-d1443063.html
   My bibliography  Save this article

Note on Intuitionistic Fuzzy Metric-like Spaces with Application in Image Processing

Author

Listed:
  • Tatjana Došenović

    (Faculty of Technology, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia)

  • Dušan Rakić

    (Faculty of Technology, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia)

  • Nebojša Ralević

    (Faculty of Technical Sciences, University of Novi Sad, Trg Dositeja Obradovića 6, 21000 Novi Sad, Serbia)

  • Biljana Carić

    (Faculty of Technical Sciences, University of Novi Sad, Trg Dositeja Obradovića 6, 21000 Novi Sad, Serbia)

Abstract

Recently, the fixed-point theorem for fuzzy contractive mappings has been investigated within the framework of intuitionistic fuzzy metric-like spaces. This interesting topic was explored through the utilization of G -Cauchy sequences as defined by Grabiec. The aim of this study is to enhance the aforementioned results in a few aspects. Initially, the proof of the fixed-point theorem is simplified and condensed, allowing for potential generalization to papers focusing on similar fixed-point analyses. Furthermore, instead of G -Cauchy sequences, the classical Cauchy sequences proposed by George and Veeramani are examined, incorporating an additional condition on the fuzzy metric. Within this context, a solution to an old unresolved question posed by Gregory and Sapena is provided. The findings are reinforced by relevant examples. Finally, the introduced fuzzy metrics are applied to the field of image processing.

Suggested Citation

  • Tatjana Došenović & Dušan Rakić & Nebojša Ralević & Biljana Carić, 2024. "Note on Intuitionistic Fuzzy Metric-like Spaces with Application in Image Processing," Mathematics, MDPI, vol. 12(15), pages 1-19, July.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:15:p:2333-:d:1443063
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/15/2333/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/15/2333/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alaca, Cihangir & Turkoglu, Duran & Yildiz, Cemil, 2006. "Fixed points in intuitionistic fuzzy metric spaces," Chaos, Solitons & Fractals, Elsevier, vol. 29(5), pages 1073-1078.
    2. Şuara Onbaşıoğlu & Banu Pazar Varol, 2023. "Intuitionistic Fuzzy Metric-like Spaces and Fixed-Point Results," Mathematics, MDPI, vol. 11(8), pages 1-15, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saadati, Reza, 2008. "Notes to the paper “Fixed points in intuitionistic fuzzy metric spaces” and its generalization to L-fuzzy metric spaces," Chaos, Solitons & Fractals, Elsevier, vol. 35(1), pages 176-180.
    2. Deshpande, Bhavana, 2009. "Fixed point and (DS)-weak commutativity condition in intuitionistic fuzzy metric spaces," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 2722-2728.
    3. Wajid Ali & Tanzeela Shaheen & Hamza Ghazanfar Toor & Faraz Akram & Md. Zia Uddin & Mohammad Mehedi Hassan, 2023. "An Innovative Decision Model Utilizing Intuitionistic Hesitant Fuzzy Aczel-Alsina Aggregation Operators and Its Application," Mathematics, MDPI, vol. 11(12), pages 1-22, June.
    4. Mathuraiveeran Jeyaraman & Mookiah Suganthi & Wasfi Shatanawi, 2020. "Common Fixed Point Theorems in Intuitionistic Generalized Fuzzy Cone Metric Spaces," Mathematics, MDPI, vol. 8(8), pages 1-13, July.
    5. Nabanita Konwar & Ayhan Esi & Pradip Debnath, 2019. "New Fixed Point Theorems via Contraction Mappings in Complete Intuitionistic Fuzzy Normed Linear Space," New Mathematics and Natural Computation (NMNC), World Scientific Publishing Co. Pte. Ltd., vol. 15(01), pages 65-83, March.
    6. Saleem, Naeem & Ahmad, Khaleel & Ishtiaq, Umar & De la Sen, Manuel, 2023. "Multivalued neutrosophic fractals and Hutchinson-Barnsley operator in neutrosophic metric space," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    7. Şuara Onbaşıoğlu & Banu Pazar Varol, 2023. "Intuitionistic Fuzzy Metric-like Spaces and Fixed-Point Results," Mathematics, MDPI, vol. 11(8), pages 1-15, April.
    8. Karakus, S. & Demirci, K. & Duman, O., 2008. "Statistical convergence on intuitionistic fuzzy normed spaces," Chaos, Solitons & Fractals, Elsevier, vol. 35(4), pages 763-769.
    9. Mursaleen, M. & Mohiuddine, S.A., 2009. "Statistical convergence of double sequences in intuitionistic fuzzy normed spaces," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2414-2421.
    10. Sharma, Sushil & Deshpande, Bhavana, 2009. "Common fixed point theorems for finite number of mappings without continuity and compatibility on intuitionistic fuzzy metric spaces," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2242-2256.
    11. Ćirić, Ljubomir B. & Ješić, Siniša N. & Ume, Jeong Sheok, 2008. "The existence theorems for fixed and periodic points of nonexpansive mappings in intuitionistic fuzzy metric spaces," Chaos, Solitons & Fractals, Elsevier, vol. 37(3), pages 781-791.
    12. Martínez-Moreno, J. & Roldán, A. & Roldán, C., 2009. "A note on the L-fuzzy Banach’s contraction principle," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2399-2400.
    13. Qiu, Dong & Shu, Lan & Guan, Jian, 2009. "Common fixed point theorems for fuzzy mappings under Φ-contraction condition," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 360-367.
    14. Ješić, Siniša N. & Babačev, Nataša A., 2008. "Common fixed point theorems in intuitionistic fuzzy metric spaces and L-fuzzy metric spaces with nonlinear contractive condition," Chaos, Solitons & Fractals, Elsevier, vol. 37(3), pages 675-687.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:15:p:2333-:d:1443063. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.