IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i12p1845-d1414430.html
   My bibliography  Save this article

Efficient Resource Management in Cloud Environments: A Modified Feeding Birds Algorithm for VM Consolidation

Author

Listed:
  • Deafallah Alsadie

    (Department of Computer Science and Artificial Intelligence, College of Computing, Umm Al-Qura University, Makkah 21961, Saudi Arabia)

  • Musleh Alsulami

    (Department of Software Engineering, College of Computing, Umm Al-Qura University, Makkah 21961, Saudi Arabia)

Abstract

Cloud data centers play a vital role in modern computing infrastructure, offering scalable resources for diverse applications. However, managing costs and resources efficiently in these centers has become a crucial concern due to the exponential growth of cloud computing. User applications exhibit complex behavior, leading to fluctuations in system performance and increased power usage. To tackle these obstacles, we introduce the Modified Feeding Birds Algorithm (ModAFBA) as an innovative solution for virtual machine (VM) consolidation in cloud environments. The primary objective is to enhance resource management and operational efficiency in cloud data centers. ModAFBA incorporates adaptive position update rules and strategies specifically designed to minimize VM migrations, addressing the unique challenges of VM consolidation. The experimental findings demonstrated substantial improvements in key performance metrics. Specifically, the ModAFBA method exhibited significant enhancements in energy usage, SLA compliance, and the number of VM migrations compared to benchmark algorithms such as TOPSIS, SVMP, and PVMP methods. Notably, the ModAFBA method achieved reductions in energy usage of 49.16%, 55.76%, and 65.13% compared to the TOPSIS, SVMP, and PVMP methods, respectively. Moreover, the ModAFBA method resulted in decreases of around 83.80%, 22.65%, and 89.82% in the quantity of VM migrations in contrast to the aforementioned benchmark techniques. The results demonstrate that ModAFBA outperforms these benchmarks by significantly reducing energy consumption, operational costs, and SLA violations. These findings highlight the effectiveness of ModAFBA in optimizing VM placement and consolidation, offering a robust and scalable approach to improving the performance and sustainability of cloud data centers.

Suggested Citation

  • Deafallah Alsadie & Musleh Alsulami, 2024. "Efficient Resource Management in Cloud Environments: A Modified Feeding Birds Algorithm for VM Consolidation," Mathematics, MDPI, vol. 12(12), pages 1-20, June.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:12:p:1845-:d:1414430
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/12/1845/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/12/1845/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:12:p:1845-:d:1414430. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.