IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i9p1983-d1130088.html
   My bibliography  Save this article

Simulation of Electromagnetic Forming Process and Optimization of Geometric Parameters of Perforated Al Sheet Using RSM

Author

Listed:
  • Nilesh Satonkar

    (School of Mechanical Engineering, Vellore Institute of Technology, Chennai 600127, India)

  • Venkatachalam Gopalan

    (Centre for Innovation and Product Development, Vellore Institute of Technology, Chennai 600127, India)

Abstract

Electromagnetic forming (EMF) is a kind of high-speed forming technology that can be useful for materials like aluminum. EMF helps to overcome the limitations of traditional forming. Due to this ability, the use of EMF in automotive applications has risen in recent years. The application of finite element software packages such as ANSYS 22 gives numerical modelling capabilities to simulate the EMF process and to design the forming process. Hence, the aim of this research work is to build and study the three-dimensional finite element model for the electromagnetic forming process and analyze the geometric parameters influencing the deformation of the perforated sheet with a design of experiments (DOE) approach. The finite element simulation is used in two stages. In the first stage, the electromagnetic force or Lorentz force striking the workpiece (i.e., Al sheet) is predicted using the ANSYS 22 Emag module. In the second stage, the predicted Lorentz force is then applied on an Al sheet to calculate the sheet deformation. The deformation of the sheet is predicted for different combinations of the geometric parameters of the sheet, such as open area percentage, ligament ratio (LR) and size of the hole, using ANSYS 22 Structural. In the DOE, response surface methodology (RSM) is used by considering the geometric parameters of perforated sheet such as open area percentage, ligament ratio (LR) and size of the hole. To minimize the number of experiments, an RSM model named central composite design (CCD) is employed. Further, the optimization study finds that the maximum deformation 0.0435 mm is calculated for the optimized combination of 25% open area, 0.14 LR and 4 mm hole size.

Suggested Citation

  • Nilesh Satonkar & Venkatachalam Gopalan, 2023. "Simulation of Electromagnetic Forming Process and Optimization of Geometric Parameters of Perforated Al Sheet Using RSM," Mathematics, MDPI, vol. 11(9), pages 1-18, April.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:9:p:1983-:d:1130088
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/9/1983/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/9/1983/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:9:p:1983-:d:1130088. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.