IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i22p4681-d1282570.html
   My bibliography  Save this article

WT-CNN: A Hybrid Machine Learning Model for Heart Disease Prediction

Author

Listed:
  • Farah Mohammad

    (Center of Excellence and Information Assurance (CoEIA), King Saud University, Riyadh 11543, Saudi Arabia)

  • Saad Al-Ahmadi

    (Department of Computer Science, College of Computer and Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia)

Abstract

Heart disease remains a predominant health challenge, being the leading cause of death worldwide. According to the World Health Organization (WHO), cardiovascular diseases (CVDs) take an estimated 17.9 million lives each year, accounting for 32% of all global deaths. Thus, there is a global health concern necessitating accurate prediction models for timely intervention. Several data mining techniques are used by researchers to help healthcare professionals to predict heart disease. However, the traditional machine learning models for predicting heart disease often struggle with handling imbalanced datasets. Moreover, when prediction is on the bases of complex data like ECG, feature extraction and selecting the most pertinent features that accurately represent the underlying pathophysiological conditions without succumbing to overfitting is also a challenge. In this paper, a continuous wavelet transformation and convolutional neural network-based hybrid model abbreviated as WT-CNN is proposed. The key phases of WT-CNN are ECG data collection, preprocessing, RUSBoost-based data balancing, CWT-based feature extraction, and CNN-based final prediction. Through extensive experimentation and evaluation, the proposed model achieves an exceptional accuracy of 97.2% in predicting heart disease. The experimental results show that the approach improves classification accuracy compared to other classification approaches and that the presented model can be successfully used by healthcare professionals for predicting heart disease. Furthermore, this work can have a potential impact on improving heart disease prediction and ultimately enhancing patient lifestyle.

Suggested Citation

  • Farah Mohammad & Saad Al-Ahmadi, 2023. "WT-CNN: A Hybrid Machine Learning Model for Heart Disease Prediction," Mathematics, MDPI, vol. 11(22), pages 1-15, November.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:22:p:4681-:d:1282570
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/22/4681/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/22/4681/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:22:p:4681-:d:1282570. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.