IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i18p3904-d1239502.html
   My bibliography  Save this article

Using Traffic Sensors in Smart Cities to Enhance a Spatio-Temporal Deep Learning Model for COVID-19 Forecasting

Author

Listed:
  • Mario Muñoz-Organero

    (Department of Telematic Engineering, Universidad Carlos III de Madrid, 28911 Madrid, Spain)

Abstract

Respiratory viruses, such as COVID-19, are spread over time and space based on human-to-human interactions. Human mobility plays a key role in the propagation of the virus. Different types of sensors in smart cities are able to continuously monitor traffic-related human mobility, showing the impact of COVID-19 on traffic volumes and patterns. In a similar way, traffic volumes measured by smart traffic sensors provide a proxy variable to capture human mobility, which is expected to have an impact on new COVID-19 infections. Adding traffic data from smart city sensors to machine learning models designed to estimate upcoming COVID-19 incidence values should provide optimized results compared to models based on COVID-19 data alone. This paper proposes a novel model to extract spatio-temporal patterns in the spread of the COVID-19 virus for short-term predictions by organizing COVID-19 incidence and traffic data as interrelated temporal sequences of spatial images. The model is trained and validated with real data from the city of Madrid in Spain for 84 weeks, combining information from 4372 traffic measuring points and 143 COVID-19 PCR test centers. The results are compared with a baseline model designed for the extraction of spatio-temporal patterns from COVID-19-only sequences of images, showing that using traffic information enhances the results when forecasting a new wave of infections (MSE values are reduced by a 70% factor). The information that traffic data has on the spread of the COVID-19 virus is also analyzed, showing that traffic data alone is not sufficient for accurate COVID-19 forecasting.

Suggested Citation

  • Mario Muñoz-Organero, 2023. "Using Traffic Sensors in Smart Cities to Enhance a Spatio-Temporal Deep Learning Model for COVID-19 Forecasting," Mathematics, MDPI, vol. 11(18), pages 1-23, September.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:18:p:3904-:d:1239502
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/18/3904/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/18/3904/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:18:p:3904-:d:1239502. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.