IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i5p769-d760646.html
   My bibliography  Save this article

MHD Hybrid Nanofluid Mixed Convection Heat Transfer and Entropy Generation in a 3-D Triangular Porous Cavity with Zigzag Wall and Rotating Cylinder

Author

Listed:
  • Aissa Abderrahmane

    (Laboratoire de Physique Quantique de la Matière et Modélisation Mathématique (LPQ3M), University Mustapha Stambouli of Mascara, Mascara 29000, Algeria
    These authors contributed equally to this work.)

  • Naef A. A. Qasem

    (Department of Aerospace Engineering & Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran 31261, Saudi Arabia)

  • Obai Younis

    (Mechanical Engineering Department, College of Engineeing at Wadi Addwaser, Prince Sattam Bin Abdulaziz University, Al-Kharj 16278, Saudi Arabia
    Mechanical Engineering Department, Fauclty of Engineeing, University of Khartoum, Khartoum 11111, Sudan)

  • Riadh Marzouki

    (Chemistry Department, College of Science, King Khalid University, Abha 61413, Saudi Arabia)

  • Abed Mourad

    (Laboratoire de Physique Quantique de la Matière et Modélisation Mathématique (LPQ3M), University Mustapha Stambouli of Mascara, Mascara 29000, Algeria)

  • Nehad Ali Shah

    (Department of Mechanical Engineering, Sejong University, Seoul 05006, Korea
    These authors contributed equally to this work.)

  • Jae Dong Chung

    (Department of Mechanical Engineering, Sejong University, Seoul 05006, Korea)

Abstract

The purpose of this work was to conduct a numerical examination of mixed convective heat transfer in a three-dimensional triangular enclosure with a revolving circular cylinder in the cavity’s center. Numerical simulations of the hybrid Fe 3 O 4 /MWCNT-water nanofluid are performed using the finite element approach (FEM). The simulation is carried out for a range of parameter values, including the Darcy number (between 10 −5 and 10 −2 ), the Hartmann number (between 0 and 100), the angular speed of the rotation (between −500 and 1000), and the number of zigzags. The stream function, isotherms, and isentropic contours illustrate the impact of many parameters on motion, heat transfer, and entropy formation. The findings indicate that for enhancing the heat transfer rates of hybrid nanofluid in a three-dimensional triangular porous cavity fitted with a rotating cylinder and subjected to a magnetic field, Darcy number > 10 −3 , Hartmann number < 0, one zigzag on the hot surface, and rotation speed >500 in flow direction are recommended.

Suggested Citation

  • Aissa Abderrahmane & Naef A. A. Qasem & Obai Younis & Riadh Marzouki & Abed Mourad & Nehad Ali Shah & Jae Dong Chung, 2022. "MHD Hybrid Nanofluid Mixed Convection Heat Transfer and Entropy Generation in a 3-D Triangular Porous Cavity with Zigzag Wall and Rotating Cylinder," Mathematics, MDPI, vol. 10(5), pages 1-18, February.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:5:p:769-:d:760646
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/5/769/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/5/769/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Moh Yaseen & Sawan Kumar Rawat & Nehad Ali Shah & Manoj Kumar & Sayed M. Eldin, 2023. "Ternary Hybrid Nanofluid Flow Containing Gyrotactic Microorganisms over Three Different Geometries with Cattaneo–Christov Model," Mathematics, MDPI, vol. 11(5), pages 1-25, March.
    2. Zeeshan & N. Ameer Ahammad & Nehad Ali Shah & Jae Dong Chung & Attaullah, 2023. "Role of Chemically Magnetized Nanofluid Flow for Energy Transition over a Porous Stretching Pipe with Heat Generation/Absorption and Its Stability," Mathematics, MDPI, vol. 11(8), pages 1-17, April.
    3. Zeeshan & N. Ameer Ahammad & Nehad Ali Shah & Jae Dong Chung & Muhammad Shoaib Khan, 2023. "Computational and Stability Analysis of MHD Time-Dependent Thermal Reaction Flow Impinging on a Vertical Porous Plate Enclosing Magnetic Prandtl Number and Thermal Radiation Effect," Mathematics, MDPI, vol. 11(6), pages 1-20, March.
    4. Pengfei Zheng & Baolin Hou & Mingsong Zou, 2022. "Magnetorheological Fluid of High-Speed Unsteady Flow in a Narrow-Long Gap: An Unsteady Numerical Model and Analysis," Mathematics, MDPI, vol. 10(14), pages 1-25, July.
    5. Zeeshan & N. Ameer Ahammad & Nehad Ali Shah & Jae Dong Chung & Attaullah & Haroon Ur Rasheed, 2023. "Analysis of Error and Stability of Nanofluid over Horizontal Channel with Heat/Mass Transfer and Nonlinear Thermal Conductivity," Mathematics, MDPI, vol. 11(3), pages 1-22, January.
    6. Firas A. Alwawi & Feras M. Al Faqih & Mohammed Z. Swalmeh & Mohd Asrul Hery Ibrahim, 2022. "Combined Convective Energy Transmission Performance of Williamson Hybrid Nanofluid over a Cylindrical Shape with Magnetic and Radiation Impressions," Mathematics, MDPI, vol. 10(17), pages 1-19, September.
    7. Farhan Lafta Rashid & Asseel M. Rasheed Al-Gaheeshi & Mohammed Alhwayzee & Bagh Ali & Nehad Ali Shah & Jae Dong Chung, 2023. "Mixed Convection in a Horizontal Channel–Cavity Arrangement with Different Heat Source Locations," Mathematics, MDPI, vol. 11(6), pages 1-26, March.
    8. Magdalena Piasecka & Beata Maciejewska & Artur Piasecki, 2023. "Heat Transfer Calculations during Flow in Mini-Channels with Estimation of Temperature Uncertainty Measurements," Energies, MDPI, vol. 16(3), pages 1-19, January.
    9. Sivasankaran Sivanandam & Fouad O. M. Mallawi, 2022. "Effects of Variable Properties on the Convective Flow of Water near Its Density Extremum in an Inclined Enclosure with Entropy Generation," Mathematics, MDPI, vol. 10(19), pages 1-20, September.
    10. Zeeshan & N. Ameer Ahammad & Nehad Ali Shah & Jae Dong Chung, 2023. "Role of Nanofluid and Hybrid Nanofluid for Enhancing Thermal Conductivity towards Exponentially Stretching Curve with Modified Fourier Law Inspired by Melting Heat Effect," Mathematics, MDPI, vol. 11(5), pages 1-21, February.

    More about this item

    Keywords

    zigzag; nanoliquid; FEM; porous; MHD;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:5:p:769-:d:760646. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.