IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i4p534-d745071.html
   My bibliography  Save this article

Some New Concepts Related to Integral Operators and Inequalities on Coordinates in Fuzzy Fractional Calculus

Author

Listed:
  • Muhammad Bilal Khan

    (Department of Mathematics, COMSATS University Islamabad, Islamabad 44000, Pakistan)

  • Gustavo Santos-García

    (Facultad de Economía y Empresa and Multidisciplinary Institute of Enterprise (IME), University of Salamanca, 37007 Salamanca, Spain)

  • Hatim Ghazi Zaini

    (Department of Computer Science, College of Computers and Information Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia)

  • Savin Treanță

    (Department of Applied Mathematics, Politehnica University of Bucharest, 060042 Bucharest, Romania)

  • Mohamed S. Soliman

    (Department of Electrical Engineering, College of Engineering, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia)

Abstract

In interval analysis, the fuzzy inclusion relation and the fuzzy order relation are two different concepts. Under the inclusion connection, convexity and non-convexity form a substantial link with various types of inequalities. Moreover, convex fuzzy-interval-valued functions are well known in convex theory because they allow us to infer more exact inequalities than convex functions. Most likely, integral operators play significant roles to define different types of inequalities. In this paper, we have successfully introduced the Riemann–Liouville fractional integrals on coordinates via fuzzy-interval-valued functions (FIVFs). Then, with the help of these integrals, some fuzzy fractional Hermite–Hadamard-type integral inequalities are also derived for the introduced coordinated convex FIVFs via a fuzzy order relation (FOR). This FOR is defined by φ -cuts or level-wise by using the Kulish–Miranker order relation. Moreover, some related fuzzy fractional Hermite–Hadamard-type integral inequalities are also obtained for the product of two coordinated convex fuzzy-interval-valued functions. The main results of this paper are the generalization of several known results.

Suggested Citation

  • Muhammad Bilal Khan & Gustavo Santos-García & Hatim Ghazi Zaini & Savin Treanță & Mohamed S. Soliman, 2022. "Some New Concepts Related to Integral Operators and Inequalities on Coordinates in Fuzzy Fractional Calculus," Mathematics, MDPI, vol. 10(4), pages 1-26, February.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:4:p:534-:d:745071
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/4/534/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/4/534/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mihai, Marcela V. & Noor, Muhammad Aslam & Noor, Khalida Inayat & Awan, Muhammad Uzair, 2015. "Some integral inequalities for harmonic h-convex functions involving hypergeometric functions," Applied Mathematics and Computation, Elsevier, vol. 252(C), pages 257-262.
    2. Yanrong An & Guoju Ye & Dafang Zhao & Wei Liu, 2019. "Hermite-Hadamard Type Inequalities for Interval ( h 1 , h 2 )-Convex Functions," Mathematics, MDPI, vol. 7(5), pages 1-9, May.
    3. Chen, Feixiang, 2015. "Extensions of the Hermite–Hadamard inequality for harmonically convex functions via fractional integrals," Applied Mathematics and Computation, Elsevier, vol. 268(C), pages 121-128.
    4. Hongxin Bai & Muhammad Shoaib Saleem & Waqas Nazeer & Muhammad Sajid Zahoor & Taiyin Zhao & Viliam Makis, 2020. "Hermite-Hadamard- and Jensen-Type Inequalities for Interval h1,h2 Nonconvex Function," Journal of Mathematics, Hindawi, vol. 2020, pages 1-6, April.
    5. Fangfang Shi & Guoju Ye & Dafang Zhao & Wei Liu, 2020. "Some Fractional Hermite–Hadamard Type Inequalities for Interval-Valued Functions," Mathematics, MDPI, vol. 8(4), pages 1-10, April.
    6. Feixiang Chen & Shanhe Wu, 2014. "Fejér and Hermite-Hadamard Type Inequalities for Harmonically Convex Functions," Journal of Applied Mathematics, Hindawi, vol. 2014, pages 1-6, August.
    7. İmdat İşcan, 2014. "Hermite-Hadamard and Simpson-Like Type Inequalities for Differentiable Harmonically Convex Functions," Journal of Mathematics, Hindawi, vol. 2014, pages 1-10, June.
    8. Muhammad Aslam Noor & Khalida Inayat Noor & Michael Th. Rassias, 2021. "Characterizations of Higher Order Strongly Generalized Convex Functions," Springer Optimization and Its Applications, in: Themistocles M. Rassias (ed.), Nonlinear Analysis, Differential Equations, and Applications, pages 341-364, Springer.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muhammad Bilal Khan & Ali Althobaiti & Cheng-Chi Lee & Mohamed S. Soliman & Chun-Ta Li, 2023. "Some New Properties of Convex Fuzzy-Number-Valued Mappings on Coordinates Using Up and Down Fuzzy Relations and Related Inequalities," Mathematics, MDPI, vol. 11(13), pages 1-23, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yahya Almalki & Waqar Afzal, 2023. "Some New Estimates of Hermite–Hadamard Inequalities for Harmonical cr - h -Convex Functions via Generalized Fractional Integral Operator on Set-Valued Mappings," Mathematics, MDPI, vol. 11(19), pages 1-21, September.
    2. Fangfang Shi & Guoju Ye & Dafang Zhao & Wei Liu, 2020. "Some Fractional Hermite–Hadamard Type Inequalities for Interval-Valued Functions," Mathematics, MDPI, vol. 8(4), pages 1-10, April.
    3. Waqar Afzal & Alina Alb Lupaş & Khurram Shabbir, 2022. "Hermite–Hadamard and Jensen-Type Inequalities for Harmonical ( h 1 , h 2 )-Godunova–Levin Interval-Valued Functions," Mathematics, MDPI, vol. 10(16), pages 1-16, August.
    4. Muhammad Bilal Khan & Hakeem A. Othman & Aleksandr Rakhmangulov & Mohamed S. Soliman & Alia M. Alzubaidi, 2023. "Discussion on Fuzzy Integral Inequalities via Aumann Integrable Convex Fuzzy-Number Valued Mappings over Fuzzy Inclusion Relation," Mathematics, MDPI, vol. 11(6), pages 1-20, March.
    5. Muhammad Aamir Ali & Fongchan Wannalookkhee & Hüseyin Budak & Sina Etemad & Shahram Rezapour, 2022. "New Hermite–Hadamard and Ostrowski-Type Inequalities for Newly Introduced Co-Ordinated Convexity with Respect to a Pair of Functions," Mathematics, MDPI, vol. 10(19), pages 1-24, September.
    6. Shin Min Kang & Ghulam Abbas & Ghulam Farid & Waqas Nazeer, 2018. "A Generalized Fejér–Hadamard Inequality for Harmonically Convex Functions via Generalized Fractional Integral Operator and Related Results," Mathematics, MDPI, vol. 6(7), pages 1-16, July.
    7. Xia Wu & JinRong Wang & Jialu Zhang, 2019. "Hermite–Hadamard-Type Inequalities for Convex Functions via the Fractional Integrals with Exponential Kernel," Mathematics, MDPI, vol. 7(9), pages 1-12, September.
    8. Wei Liu & Fangfang Shi & Guoju Ye & Dafang Zhao, 2022. "The Properties of Harmonically cr - h -Convex Function and Its Applications," Mathematics, MDPI, vol. 10(12), pages 1-15, June.
    9. Asfand Fahad & Ayesha & Yuanheng Wang & Saad Ihsaan Butt, 2023. "Jensen–Mercer and Hermite–Hadamard–Mercer Type Inequalities for GA- h -Convex Functions and Its Subclasses with Applications," Mathematics, MDPI, vol. 11(2), pages 1-21, January.
    10. Muhammad Tariq & Soubhagya Kumar Sahoo & Sotiris K. Ntouyas & Omar Mutab Alsalami & Asif Ali Shaikh & Kamsing Nonlaopon, 2022. "Some New Mathematical Integral Inequalities Pertaining to Generalized Harmonic Convexity with Applications," Mathematics, MDPI, vol. 10(18), pages 1-21, September.
    11. Muhammad Bilal Khan & Ali Althobaiti & Cheng-Chi Lee & Mohamed S. Soliman & Chun-Ta Li, 2023. "Some New Properties of Convex Fuzzy-Number-Valued Mappings on Coordinates Using Up and Down Fuzzy Relations and Related Inequalities," Mathematics, MDPI, vol. 11(13), pages 1-23, June.
    12. Gustavo Santos-García & Muhammad Bilal Khan & Hleil Alrweili & Ahmad Aziz Alahmadi & Sherif S. M. Ghoneim, 2022. "Hermite–Hadamard and Pachpatte Type Inequalities for Coordinated Preinvex Fuzzy-Interval-Valued Functions Pertaining to a Fuzzy-Interval Double Integral Operator," Mathematics, MDPI, vol. 10(15), pages 1-25, August.
    13. Imran Abbas Baloch & İmdat İşcan, 2015. "Some Ostrowski Type Inequalities for Harmonically -Convex Functions in Second Sense," International Journal of Analysis, Hindawi, vol. 2015, pages 1-9, October.
    14. Tareq Saeed & Waqar Afzal & Mujahid Abbas & Savin Treanţă & Manuel De la Sen, 2022. "Some New Generalizations of Integral Inequalities for Harmonical cr -( h 1 , h 2 )-Godunova–Levin Functions and Applications," Mathematics, MDPI, vol. 10(23), pages 1-16, December.
    15. Muhammad Bilal Khan & Aleksandr Rakhmangulov & Najla Aloraini & Muhammad Aslam Noor & Mohamed S. Soliman, 2023. "Generalized Harmonically Convex Fuzzy-Number-Valued Mappings and Fuzzy Riemann–Liouville Fractional Integral Inequalities," Mathematics, MDPI, vol. 11(3), pages 1-24, January.
    16. Muhammad Bilal Khan & Savin Treanțǎ & Mohamed S. Soliman & Kamsing Nonlaopon & Hatim Ghazi Zaini, 2022. "Some New Versions of Integral Inequalities for Left and Right Preinvex Functions in the Interval-Valued Settings," Mathematics, MDPI, vol. 10(4), pages 1-15, February.
    17. Muhammad Adil Khan & Asadullah Sohail & Hidayat Ullah & Tareq Saeed, 2023. "Estimations of the Jensen Gap and Their Applications Based on 6-Convexity," Mathematics, MDPI, vol. 11(8), pages 1-25, April.
    18. Dafang Zhao & Ghazala Gulshan & Muhammad Aamir Ali & Kamsing Nonlaopon, 2022. "Some New Midpoint and Trapezoidal-Type Inequalities for General Convex Functions in q -Calculus," Mathematics, MDPI, vol. 10(3), pages 1-14, January.
    19. Hüseyin Budak & Fatih Hezenci & Hasan Kara & Mehmet Zeki Sarikaya, 2023. "Bounds for the Error in Approximating a Fractional Integral by Simpson’s Rule," Mathematics, MDPI, vol. 11(10), pages 1-16, May.
    20. Praveen Agarwal & Mahir Kadakal & İmdat İşcan & Yu-Ming Chu, 2020. "Better Approaches for n -Times Differentiable Convex Functions," Mathematics, MDPI, vol. 8(6), pages 1-11, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:4:p:534-:d:745071. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.