IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i3p455-d739011.html
   My bibliography  Save this article

Intelligent Robust Cross-Domain Fault Diagnostic Method for Rotating Machines Using Noisy Condition Labels

Author

Listed:
  • Abhijeet Ainapure

    (Department of Mechanical Engineering, University of Cincinnati, Cincinnati, OH 45221, USA)

  • Shahin Siahpour

    (Department of Mechanical Engineering, University of Cincinnati, Cincinnati, OH 45221, USA)

  • Xiang Li

    (Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, Xi’an Jiaotong University, Xi’an 710049, China)

  • Faray Majid

    (Department of Mechanical Engineering, University of Cincinnati, Cincinnati, OH 45221, USA)

  • Jay Lee

    (Department of Mechanical Engineering, University of Cincinnati, Cincinnati, OH 45221, USA)

Abstract

Cross-domain fault diagnosis methods have been successfully and widely developed in the past years, which focus on practical industrial scenarios with training and testing data from numerous machinery working regimes. Due to the remarkable effectiveness in such problems, deep learning-based domain adaptation approaches have been attracting increasing attention. However, the existing methods in the literature are generally lower compared to environmental noise and data availability, and it is difficult to achieve promising performance under harsh practical conditions. This paper proposes a new cross-domain fault diagnosis method with enhanced robustness. Noisy labels are introduced to significantly increase the generalization ability of the data-driven model. Promising diagnosis performance can be obtained with strong noise interference in testing, as well as in practical cases with low-quality data. Experiments on two rotating machinery datasets are carried out for validation. The results indicate that the proposed algorithm is well suited to be applied in real industrial environments to achieve promising performance with variations of working conditions.

Suggested Citation

  • Abhijeet Ainapure & Shahin Siahpour & Xiang Li & Faray Majid & Jay Lee, 2022. "Intelligent Robust Cross-Domain Fault Diagnostic Method for Rotating Machines Using Noisy Condition Labels," Mathematics, MDPI, vol. 10(3), pages 1-17, January.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:3:p:455-:d:739011
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/3/455/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/3/455/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gyanendra Prasad Joshi & Fayadh Alenezi & Gopalakrishnan Thirumoorthy & Ashit Kumar Dutta & Jinsang You, 2021. "Ensemble of Deep Learning-Based Multimodal Remote Sensing Image Classification Model on Unmanned Aerial Vehicle Networks," Mathematics, MDPI, vol. 9(22), pages 1-17, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dezhi Hao & Xianwen Gao, 2022. "Unsupervised Fault Diagnosis of Sucker Rod Pump Using Domain Adaptation with Generated Motor Power Curves," Mathematics, MDPI, vol. 10(8), pages 1-22, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boris V. Rumiantsev & Rasul A. Kochkarov & Azret A. Kochkarov, 2023. "Graph-Clustering Method for Construction of the Optimal Movement Trajectory under the Terrain Patrolling," Mathematics, MDPI, vol. 11(1), pages 1-13, January.
    2. Yifan Da & Zhiyuan Ji & Yongsheng Zhou, 2022. "Building Damage Assessment Based on Siamese Hierarchical Transformer Framework," Mathematics, MDPI, vol. 10(11), pages 1-23, June.
    3. David Álvarez Gutiérrez & Fernando Sánchez Lasheras & Vicente Martín Sánchez & Sergio Luis Suárez Gómez & Víctor Moreno & Ferrán Moratalla-Navarro & Antonio José Molina de la Torre, 2022. "A New Algorithm for Multivariate Genome Wide Association Studies Based on Differential Evolution and Extreme Learning Machines," Mathematics, MDPI, vol. 10(7), pages 1-21, March.
    4. Iftikhar Ahmad & Abdul Qayyum & Brij B. Gupta & Madini O. Alassafi & Rayed A. AlGhamdi, 2022. "Ensemble of 2D Residual Neural Networks Integrated with Atrous Spatial Pyramid Pooling Module for Myocardium Segmentation of Left Ventricle Cardiac MRI," Mathematics, MDPI, vol. 10(4), pages 1-23, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:3:p:455-:d:739011. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.