IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i22p4324-d976624.html
   My bibliography  Save this article

Study of the Effect of Throttling on the Success of Starting a Line-Start Permanent Magnet Motor Driving a Centrifugal Fan

Author

Listed:
  • Aleksey Paramonov

    (Department of Electrical Engineering, Ural Federal University, 620002 Yekaterinburg, Russia)

  • Safarbek Oshurbekov

    (Department of Electrical Engineering, Ural Federal University, 620002 Yekaterinburg, Russia)

  • Vadim Kazakbaev

    (Department of Electrical Engineering, Ural Federal University, 620002 Yekaterinburg, Russia)

  • Vladimir Prakht

    (Department of Electrical Engineering, Ural Federal University, 620002 Yekaterinburg, Russia)

  • Vladimir Dmitrievskii

    (Department of Electrical Engineering, Ural Federal University, 620002 Yekaterinburg, Russia)

Abstract

Direct-on-line synchronous motors are a good alternative to induction motors in fluid machinery drives due to their greater energy efficiency but have the significant disadvantage of limiting the maximum moment of inertia of the loading mechanism to ensure their successful and reliable start-up. This disadvantage is critical in centrifugal fans with a massive steel impeller. In this article, using a mathematical model, the dynamics of starting and synchronizing a permanent magnet synchronous motor fed directly from the mains as part of a fan drive are studied. The simulation results show the possibility of increasing the maximum moment of inertia of the load at the successful start-up of a direct-on-line synchronous motor by adjusting the hydraulic part of the fan pipeline by means of throttling. The conclusions of this paper can be used when selecting an electric motor to drive industrial fans and can contribute to wider use of energy-efficient synchronous motors with direct start-up from the mains.

Suggested Citation

  • Aleksey Paramonov & Safarbek Oshurbekov & Vadim Kazakbaev & Vladimir Prakht & Vladimir Dmitrievskii, 2022. "Study of the Effect of Throttling on the Success of Starting a Line-Start Permanent Magnet Motor Driving a Centrifugal Fan," Mathematics, MDPI, vol. 10(22), pages 1-15, November.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:22:p:4324-:d:976624
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/22/4324/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/22/4324/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Maria Dems & Krzysztof Komeza & Jacek Szulakowski & Witold Kubiak, 2021. "Dynamic Simulation of High-Speed Induction Motor," Energies, MDPI, vol. 14(9), pages 1-14, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lorenzo Carbone & Simone Cosso & Krishneel Kumar & Mario Marchesoni & Massimiliano Passalacqua & Luis Vaccaro, 2022. "Stability Analysis of Open-Loop V/Hz Controlled Asynchronous Machines and Two Novel Mitigation Strategies for Oscillations Suppression," Energies, MDPI, vol. 15(4), pages 1-15, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:22:p:4324-:d:976624. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.