IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i15p2643-d874040.html
   My bibliography  Save this article

Miura-Ori Inspired Smooth Sheet Attachments for Zipper-Coupled Tubes

Author

Listed:
  • Dylan C. Webb

    (Department of Mathematics, Brigham Young University, Provo, UT 84602, USA)

  • Elissa Reynolds

    (Department of Mathematics, Brigham Young University, Provo, UT 84602, USA)

  • Denise M. Halverson

    (Department of Mathematics, Brigham Young University, Provo, UT 84602, USA)

  • Larry L. Howell

    (Department of Mechanical Engineering, Brigham Young University, Provo, UT 84602, USA)

Abstract

Zipper-coupled tubes are a broadly applicable, deployable mechanism with an angular surface that can be smoothed by attaching an additional smooth sheet pattern. The existing design for the smooth sheet attachment, however, leaves small gaps that can only be covered by adding flaps that unfold separately, limiting applicability in situations requiring a seamless surface and simultaneous deployment. We provide a novel construction of the smooth sheet attachment that unfolds simultaneously with zipper-coupled tubes to cover the entire surface without requiring additional actuation and without inhibiting the tubes’ motion up to an ideal, unfolded state of stability. Furthermore, we highlight the mathematics underlying the design and motion of the new smooth sheet pattern, thereby demonstrating its rigid-foldability and compatibility with asymmetric zipper-coupled tubes.

Suggested Citation

  • Dylan C. Webb & Elissa Reynolds & Denise M. Halverson & Larry L. Howell, 2022. "Miura-Ori Inspired Smooth Sheet Attachments for Zipper-Coupled Tubes," Mathematics, MDPI, vol. 10(15), pages 1-15, July.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:15:p:2643-:d:874040
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/15/2643/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/15/2643/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yoonho Kim & Hyunwoo Yuk & Ruike Zhao & Shawn A. Chester & Xuanhe Zhao, 2018. "Printing ferromagnetic domains for untethered fast-transforming soft materials," Nature, Nature, vol. 558(7709), pages 274-279, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baofu Ding & Pengyuan Zeng & Ziyang Huang & Lixin Dai & Tianshu Lan & Hao Xu & Yikun Pan & Yuting Luo & Qiangmin Yu & Hui-Ming Cheng & Bilu Liu, 2022. "A 2D material–based transparent hydrogel with engineerable interference colours," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Xinchen Ni & Haiwen Luan & Jin-Tae Kim & Sam I. Rogge & Yun Bai & Jean Won Kwak & Shangliangzi Liu & Da Som Yang & Shuo Li & Shupeng Li & Zhengwei Li & Yamin Zhang & Changsheng Wu & Xiaoyue Ni & Yongg, 2022. "Soft shape-programmable surfaces by fast electromagnetic actuation of liquid metal networks," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Pavlo Makushko & Jin Ge & Gilbert Santiago Cañón Bermúdez & Oleksii Volkov & Yevhen Zabila & Stanislav Avdoshenko & Rico Illing & Leonid Ionov & Martin Kaltenbrunner & Jürgen Fassbender & Rui Xu & Den, 2025. "Scalable magnetoreceptive e-skin for energy-efficient high-resolution interaction towards undisturbed extended reality," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    4. Guoyong Mao & David Schiller & Doris Danninger & Bekele Hailegnaw & Florian Hartmann & Thomas Stockinger & Michael Drack & Nikita Arnold & Martin Kaltenbrunner, 2022. "Ultrafast small-scale soft electromagnetic robots," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Mengmeng Sun & Bo Hao & Shihao Yang & Xin Wang & Carmel Majidi & Li Zhang, 2022. "Exploiting ferrofluidic wetting for miniature soft machines," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    6. Chenghai Li & Qiguang He & Yang Wang & Zhijian Wang & Zijun Wang & Raja Annapooranan & Michael I. Latz & Shengqiang Cai, 2022. "Highly robust and soft biohybrid mechanoluminescence for optical signaling and illumination," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    7. Sukyoung Won & Hee Eun Lee & Young Shik Cho & Kijun Yang & Jeong Eun Park & Seung Jae Yang & Jeong Jae Wie, 2022. "Multimodal collective swimming of magnetically articulated modular nanocomposite robots," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    8. Junghwan Byun & Aniket Pal & Jongkuk Ko & Metin Sitti, 2024. "Integrated mechanical computing for autonomous soft machines," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    9. Changchun Wu & Hao Liu & Senyuan Lin & James Lam & Ning Xi & Yonghua Chen, 2025. "Shape morphing of soft robotics by pneumatic torsion strip braiding," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    10. Yue Zhang & Kangkang Liu & Tao Liu & Chujun Ni & Di Chen & Jiamei Guo & Chang Liu & Jian Zhou & Zheng Jia & Qian Zhao & Pengju Pan & Tao Xie, 2021. "Differential diffusion driven far-from-equilibrium shape-shifting of hydrogels," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    11. D. Fonseca & P. Neto, 2025. "Electrically-driven phase transition actuators to power soft robot designs," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    12. Wenbo Li & Huyue Chen & Zhiran Yi & Fuyi Fang & Xinyu Guo & Zhiyuan Wu & Qiuhua Gao & Lei Shao & Jian Xu & Guang Meng & Wenming Zhang, 2023. "Self-vectoring electromagnetic soft robots with high operational dimensionality," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    13. Rong Wang & Chao Yuan & Jianxiang Cheng & Xiangnan He & Haitao Ye & Bingcong Jian & Honggeng Li & Jiaming Bai & Qi Ge, 2024. "Direct 4D printing of ceramics driven by hydrogel dehydration," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    14. Shuyu Xue & Zhipanxin Shi & Zaiyu Wang & Haozhe Tan & Feng Gao & Zicong Zhang & Ziyue Ye & Shifeng Nian & Ting Han & Jianbo Zhang & Zheng Zhao & Ben Zhong Tang & Qiuyu Zhang, 2024. "Fluorescent robust photoactuator via photo-crosslinking induced single-layered janus polyimide," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    15. Siqi An & Xiaowen Li & Zengrong Guo & Yi Huang & Yanlin Zhang & Hanqing Jiang, 2024. "Energy-efficient dynamic 3D metasurfaces via spatiotemporal jamming interleaved assemblies for tactile interfaces," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    16. Xun Zhao & Yihao Zhou & Jing Xu & Guorui Chen & Yunsheng Fang & Trinny Tat & Xiao Xiao & Yang Song & Song Li & Jun Chen, 2021. "Soft fibers with magnetoelasticity for wearable electronics," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    17. Shaojun Jiang & Bo Li & Jun Zhao & Dong Wu & Yiyuan Zhang & Zhipeng Zhao & Yiyuan Zhang & Hao Yu & Kexiang Shao & Cong Zhang & Rui Li & Chao Chen & Zuojun Shen & Jie Hu & Bin Dong & Ling Zhu & Jiawen , 2023. "Magnetic Janus origami robot for cross-scale droplet omni-manipulation," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    18. Cisternas, Jaime & Concha, Andrés, 2024. "Searching nontrivial magnetic equilibria using the deflated Newton method," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    19. Jiefeng Sun & Elisha Lerner & Brandon Tighe & Clint Middlemist & Jianguo Zhao, 2023. "Embedded shape morphing for morphologically adaptive robots," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    20. Jun Kyu Choe & Junsoo Kim & Hyeonseo Song & Joonbum Bae & Jiyun Kim, 2023. "A soft, self-sensing tensile valve for perceptive soft robots," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:15:p:2643-:d:874040. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.