Author
Abstract
Background : Accurate route planning is a core challenge in logistics, particularly for small- and medium-sized enterprises that lack access to costly geospatial tools. This study explores whether usable distance matrices and routing outputs can be generated solely from geographic coordinates without relying on full map-based infrastructure. Methods : A dataset of over 5000 Hungarian postal locations was used to evaluate five models: Haversine-based scaling with circuity, linear regression, second- and third-degree polynomial regressions, and a trained artificial neural network. Models were tested on the full dataset, and three example routes representing short, medium, and long distances. Both statistical accuracy and route-level performance were assessed, including a practical optimization task. Results : Statistical models maintained internal consistency, but systematically overestimated longer distances. The ANN model provided significantly better accuracy across all scales and produced routes more consistent with map-based paths. A new evaluation method was introduced to directly compare routing outputs. Conclusions : Practical route planning can be achieved without GIS services. ML-based estimators offer a cost-effective alternative, with potential for further improvement using larger datasets, additional input features, and the integration of travel time prediction. This approach bridges the gap between simplified approximations and commercial routing systems.
Suggested Citation
Péter Veres, 2025.
"ML and Statistics-Driven Route Planning: Effective Solutions Without Maps,"
Logistics, MDPI, vol. 9(3), pages 1-22, September.
Handle:
RePEc:gam:jlogis:v:9:y:2025:i:3:p:124-:d:1739860
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlogis:v:9:y:2025:i:3:p:124-:d:1739860. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.