IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v9y2020i10p387-d426601.html
   My bibliography  Save this article

Urban Planning and Design for Building Neighborhood Resilience to Climate Change

Author

Listed:
  • Katarzyna Rędzińska

    (Department of Spatial Planning and Environmental Sciences, Faculty of Geodesy and Cartography, Warsaw University of Technology, Plac Politechniki 1, 00-661 Warsaw, Poland)

  • Monika Piotrkowska

    (Department of Spatial Planning and Environmental Sciences, Faculty of Geodesy and Cartography, Warsaw University of Technology, Plac Politechniki 1, 00-661 Warsaw, Poland)

Abstract

The aim of the paper was to present the procedure of building neighborhood resilience to climate threats, embedded in planning (from the strategic to local level) and design process and focused on usage of natural adaptive potential. The presented approach encompasses: (1) the strategic identification of focal areas in terms of climate adaptation needs, (2) comprehensive diagnosis of local ecological vulnerability and natural adaptive potential to build adaptive capacity, and (3) incorporation of natural adaptive potential through an identified set of planning and design tools. For diagnosis and strategic environmental impact assessment, the multicriteria analysis has been elaborated. The described procedure is applied to the City of Warsaw on the strategic level, by elaboration of the ranking of districts in terms of priority to take adaptation actions based on climatic threats, demographic vulnerability, and assessment of Warsaw Green Infrastructure potential. For further analysis at the planning and design stage, the district with the most urgent adaptation needs has been chosen, and within its borders, two neighborhoods (existing and planned one) with diagnosed ecological sensitivity were selected. Both case studies were analyzed in terms of environmental conditions, urban structure, and planning provisions. It enabled identification of existing natural adaptive potential and assessment of its use. As a result, propositions for enhancing neighborhood resilience to climate change were suggested.

Suggested Citation

  • Katarzyna Rędzińska & Monika Piotrkowska, 2020. "Urban Planning and Design for Building Neighborhood Resilience to Climate Change," Land, MDPI, vol. 9(10), pages 1-19, October.
  • Handle: RePEc:gam:jlands:v:9:y:2020:i:10:p:387-:d:426601
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/9/10/387/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/9/10/387/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mark Scott & Mick Lennon & Dagmar Haase & Aleksandra Kazmierczak & Gerry Clabby & Tim Beatley, 2016. "Nature-based solutions for the contemporary city/Re-naturing the city/Reflections on urban landscapes, ecosystems services and nature-based solutions in cities/Multifunctional green infrastructure and," Planning Theory & Practice, Taylor & Francis Journals, vol. 17(2), pages 267-300, April.
    2. J.B. Ellis, 2013. "Sustainable surface water management and green infrastructure in UK urban catchment planning," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 56(1), pages 24-41, January.
    3. Barbara Szulczewska & Renata Giedych & Gabriela Maksymiuk, 2017. "Can we face the challenge: how to implement a theoretical concept of green infrastructure into planning practice? Warsaw case study," Landscape Research, Taylor & Francis Journals, vol. 42(2), pages 176-194, February.
    4. Hyun Woo Kim & Tho Tran, 2018. "An Evaluation of Local Comprehensive Plans Toward Sustainable Green Infrastructure in US," Sustainability, MDPI, vol. 10(11), pages 1-21, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alessio Russo & Giuseppe T. Cirella, 2021. "Urban Ecosystem Services: New Findings for Landscape Architects, Urban Planners, and Policymakers," Land, MDPI, vol. 10(1), pages 1-5, January.
    2. Sandra Ricart & Carlo Berizzi & David Saurí & Gaia Nerea Terlicher, 2022. "The Social, Political, and Environmental Dimensions in Designing Urban Public Space from a Water Management Perspective: Testing European Experiences," Land, MDPI, vol. 11(9), pages 1-24, September.
    3. Melika Zarei & Sina Shahab, 2025. "Nature-Based Solutions in Urban Green Infrastructure: A Systematic Review of Success Factors and Implementation Challenges," Land, MDPI, vol. 14(4), pages 1-26, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Renato Monteiro & José C. Ferreira & Paula Antunes, 2020. "Green Infrastructure Planning Principles: An Integrated Literature Review," Land, MDPI, vol. 9(12), pages 1-19, December.
    2. Renato Monteiro & José Carlos Ferreira & Paula Antunes, 2022. "Green Infrastructure Planning Principles: Identification of Priorities Using Analytic Hierarchy Process," Sustainability, MDPI, vol. 14(9), pages 1-16, April.
    3. Razieh Zandieh & Javier Martinez & Johannes Flacke, 2019. "Older Adults’ Outdoor Walking and Inequalities in Neighbourhood Green Spaces Characteristics," IJERPH, MDPI, vol. 16(22), pages 1-18, November.
    4. Pietro Piana & Francesco Faccini & Fabio Luino & Guido Paliaga & Alessandro Sacchini & Charles Watkins, 2019. "Geomorphological Landscape Research and Flood Management in a Heavily Modified Tyrrhenian Catchment," Sustainability, MDPI, vol. 11(17), pages 1-22, August.
    5. Erica Honeck & Atte Moilanen & Benjamin Guinaudeau & Nicolas Wyler & Martin A. Schlaepfer & Pascal Martin & Arthur Sanguet & Loreto Urbina & Bertrand von Arx & Joëlle Massy & Claude Fischer & Anthony , 2020. "Implementing Green Infrastructure for the Spatial Planning of Peri-Urban Areas in Geneva, Switzerland," Sustainability, MDPI, vol. 12(4), pages 1-20, February.
    6. Chloé Duffaut & Nathalie Frascaria-Lacoste & Pierre-Antoine Versini, 2022. "Barriers and Levers for the Implantation of Sustainable Nature-Based Solutions in Cities: Insights from France," Sustainability, MDPI, vol. 14(16), pages 1-19, August.
    7. Joanna Badach & Elżbieta Raszeja, 2019. "Developing a Framework for the Implementation of Landscape and Greenspace Indicators in Sustainable Urban Planning. Waterfront Landscape Management: Case Studies in Gdańsk, Poznań and Bristol," Sustainability, MDPI, vol. 11(8), pages 1-26, April.
    8. Liquete, Camino & Udias, Angel & Conte, Giulio & Grizzetti, Bruna & Masi, Fabio, 2016. "Integrated valuation of a nature-based solution for water pollution control. Highlighting hidden benefits," Ecosystem Services, Elsevier, vol. 22(PB), pages 392-401.
    9. Sabine van Rooij & Wim Timmermans & Onno Roosenschoon & Saskia Keesstra & Marjolein Sterk & Bas Pedroli, 2020. "Landscape-Based Visions as Powerful Boundary Objects in Spatial Planning: Lessons from Three Dutch Projects," Land, MDPI, vol. 10(1), pages 1-14, December.
    10. Sarah J. Tayouga & Sara A. Gagné, 2016. "The Socio-Ecological Factors that Influence the Adoption of Green Infrastructure," Sustainability, MDPI, vol. 8(12), pages 1-17, December.
    11. Linda Novosadová & Wim van der Knaap, 2021. "The Role of Biophilic Agents in Building a Green Resilient City; the Case of Birmingham, UK," Sustainability, MDPI, vol. 13(9), pages 1-20, April.
    12. Vidya Anderson & William A. Gough, 2021. "Harnessing the Four Horsemen of Climate Change: A Framework for Deep Resilience, Decarbonization, and Planetary Health in Ontario, Canada," Sustainability, MDPI, vol. 13(1), pages 1-19, January.
    13. Peter Brokking & Ulla Mörtberg & Berit Balfors, 2021. "Municipal Practices for Integrated Planning of Nature-Based Solutions in Urban Development in the Stockholm Region," Sustainability, MDPI, vol. 13(18), pages 1-20, September.
    14. Paulina Legutko-Kobus & Maciej Nowak & Alexandru-Ionut Petrisor & Dan Bărbulescu & Cerasella Craciun & Atena-Ioana Gârjoabă, 2023. "Protection of Environmental and Natural Values of Urban Areas against Investment Pressure: A Case Study of Romania and Poland," Land, MDPI, vol. 12(1), pages 1-33, January.
    15. Angela Heymans & Jessica Breadsell & Gregory M. Morrison & Joshua J. Byrne & Christine Eon, 2019. "Ecological Urban Planning and Design: A Systematic Literature Review," Sustainability, MDPI, vol. 11(13), pages 1-20, July.
    16. Kichan Kim & Chang Kil Lee & Hyun Woo Kim, 2022. "Understanding the Accessibility of Urban Parks and Connectivity of Green Spaces in Single-Person Household Distribution: Case Study of Incheon, South Korea," Land, MDPI, vol. 11(9), pages 1-17, August.
    17. Joanna Dobrzańska & Adam Nadolny & Robert Kalbarczyk & Monika Ziemiańska, 2022. "Urban Resilience and Residential Greenery—The Evidence from Poland," Sustainability, MDPI, vol. 14(18), pages 1-18, September.
    18. Rúben Mendes & Teresa Fidélis & Peter Roebeling & Filipe Teles, 2020. "The Institutionalization of Nature-Based Solutions—A Discourse Analysis of Emergent Literature," Resources, MDPI, vol. 9(1), pages 1-18, January.
    19. Ndivhuwo Ramovha & Martha Chadyiwa & Freeman Ntuli & Thandiwe Sithole, 2024. "The Potential of Stormwater Management Strategies and Artificial Intelligence Modeling Tools to Improve Water Quality: A Review," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(10), pages 3527-3560, August.
    20. Washbourne, Carla-Leanne & Goddard, Mark A. & Le Provost, Gaëtane & Manning, David A.C. & Manning, Peter, 2020. "Trade-offs and synergies in the ecosystem service demand of urban brownfield stakeholders," Ecosystem Services, Elsevier, vol. 42(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:9:y:2020:i:10:p:387-:d:426601. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.