Author
Listed:
- Yue Li
(College of Public Administration, Guizhou University of Finance and Economics, Guiyang 550025, China)
- Shengyan Wan
(College of Public Administration, Guizhou University of Finance and Economics, Guiyang 550025, China)
- Jinglan Liu
(College of Public Administration, Guizhou University of Finance and Economics, Guiyang 550025, China)
- Lin Qiu
(College of Public Administration, Guizhou University of Finance and Economics, Guiyang 550025, China)
Abstract
The trade-offs and synergies among ecosystem services can provide clues for understanding the mechanisms of regional ecological evolution. Previous studies have mainly concentrated on administrative divisions to characterize ecosystem services trade-offs and synergies within specific regions. However, ambiguity persists regarding the spatial diversity and scale dependency of regional ecosystem services, along with the degree to which human activity and climatic variation influence the relationships of multiscale ecosystem services. This study focuses on the Yangtze River Delta Urban Agglomeration in China. Based on grid, county-level, and city-level scales, it analyzes five ecosystem services, namely habitat quality, carbon storage, food production, soil conservation, and water yield, from 2000 to 2020. By using correlation analysis and spatial autocorrelation methods, this study explores the intensity of the trade-offs and synergies among ecosystem services and their spatial patterns. Then, combined with the Optimal Parameters-based Geographical Detector, it identifies the dominant driving factors, quantifies their degree of contribution, and reveals the multiscale differentiation of ecosystem service relationships and their causes. The results show that the five ecosystem services all exhibit significant spatiotemporal heterogeneity. At the grid scale, there is a trade-off relationship between food production and the other four services, while a strong synergistic effect exists among the remaining four services. At the county scale, the synergistic association between habitat quality and carbon storage is the most significant, with the highest contributions from the average annual precipitation and average annual temperature ( q -values 0.893 and 0.782, respectively). At the prefecture-level city scale, the intensity of the ecosystem services trade-offs and synergies shows an increasing trend, and the impact of interactions between socio-ecological elements is significantly higher than that at the grid and county scales. This research provides an evidence-based foundation for decision makers to devise suitable strategies that support the coordinated advancement of ecology and the economy across various spatial scales. It is crucial for promoting precise ecosystem regulation and the sustainability of the Yangtze River Delta Urban Agglomeration in China.
Suggested Citation
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:14:y:2025:i:9:p:1748-:d:1736964. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.