Author
Listed:
- Xiangxue Han
(School of Land Science and Technology, China University of Geosciences (Beijing), Beijing 100083, China)
- Meichen Fu
(School of Land Science and Technology, China University of Geosciences (Beijing), Beijing 100083, China)
- Xinshu Huang
(School of Energy Resources, China University of Geosciences (Beijing), Beijing 100083, China)
Abstract
Climate change has emerged as a critical global issue. Land-use/cover change (LUCC) plays a pivotal role in influencing terrestrial ecosystem carbon cycles and further regulates carbon emission intensity by reshaping the spatial characteristics of landscape patterns. Taking 300 Chinese cities as the study area, an analytical framework encompassing carbon emission accounting, regional land-use landscape pattern analysis, spatiotemporal correlation between landscape patterns and carbon emissions, and economic “core-periphery” disparities was presented. The land-use carbon emissions and landscape pattern indices of each city from 2005 to 2020 were calculated, and the geographically weighted regression (GWR) model was employed to examine the impact of land-use landscape pattern changes on carbon emissions from an urban perspective. Furthermore, the cities were categorized into developed and underdeveloped groups based on the median per capita GDP to compare how economic development levels moderate this impact mechanism. The results indicate that the relationship between landscape patterns and carbon emissions exhibits significant spatial heterogeneity, highlighting the complexity of the influence of land-use morphology on carbon emissions. Sustainable land-use strategies must account for regional disparities in economic levels, planning capacity, and administrative characteristics rather than pursuing a uniform urban form. Economic development significantly moderates the carbon mitigation effects of landscape patterns through its influence on spatial governance capacity, leading to pronounced differences between cities at varying development levels. Moving forward, regionally tailored approaches that integrate landscape optimization with industrial transformation and ecological conservation should be prioritized to provide spatial solutions for achieving the carbon peaking and carbon neutrality goals.
Suggested Citation
Xiangxue Han & Meichen Fu & Xinshu Huang, 2025.
"Spatiotemporal Heterogeneity of Land-Use Landscape Pattern Effects on CO 2 Emissions at the City-Level Scale in China,"
Land, MDPI, vol. 14(9), pages 1-33, August.
Handle:
RePEc:gam:jlands:v:14:y:2025:i:9:p:1715-:d:1731714
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:14:y:2025:i:9:p:1715-:d:1731714. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.