Author
Listed:
- Bill Grace
(Australian Urban Design Research Centre, School of Design, University of Western Australia, Perth, WA 6009, Australia)
- Julian Bolleter
(Australian Urban Design Research Centre, School of Design, University of Western Australia, Perth, WA 6009, Australia)
- Maassoumeh Barghchi
(Australian Urban Design Research Centre, School of Design, University of Western Australia, Perth, WA 6009, Australia)
- James Lund
(Australian Urban Design Research Centre, School of Design, University of Western Australia, Perth, WA 6009, Australia)
Abstract
There is increasing interest in the role of parks as potential cool refuges in the age of climate change. Such potential refuges result from the Park Cool Island (PCI) effect, reflecting the temperature differential between the park and surrounding urban areas. However, this study of different park typologies in Perth, Australia, illustrates that while surface temperatures are 10–15 °C lower in parks during summer afternoons (much less than at other times), air temperatures are generally no different from the adjacent streetscape for the smaller parks. Only the largest park in the study had 1–2 °C lower morning and mid-afternoon air temperature differentials. The study illustrates that while the PCI is a real phenomenon, the magnitude in terms of air temperature is small, and it is of less relevance to the conditions felt by humans in average summer daytime conditions than the direct effects of solar radiation. Many studies have assessed the PCI effect, an indicator that has shown a wide range across different studies and measurement techniques. However, this novel paper utilises satellite remote-sensed land surface temperatures, on-ground measurements of surface temperatures, air temperatures, and humidity, as well as modelling using the microclimatic simulation software ENVI-met version 5.0. A reliance on land surface temperature, which in isolation has a marginal correlation with human experience of thermal comfort, has led some researchers to overstate the PCI effect and its influence on adjoining urban areas. The research reported in this paper illustrates that it is the shade provided by the canopy in parks, rather than parks themselves, that provides meaningful thermal comfort benefits. Accordingly, adaptation to increasing temperatures requires the creation of a continuous canopy, ideally over parks, streetscapes, and private lots in an interconnected network.
Suggested Citation
Bill Grace & Julian Bolleter & Maassoumeh Barghchi & James Lund, 2025.
"Unpacking Park Cool Island Effects Using Remote-Sensed, Measured and Modelled Microclimatic Data,"
Land, MDPI, vol. 14(8), pages 1-27, August.
Handle:
RePEc:gam:jlands:v:14:y:2025:i:8:p:1686-:d:1728818
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:14:y:2025:i:8:p:1686-:d:1728818. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.