IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v14y2025i8p1680-d1728593.html
   My bibliography  Save this article

Vegetation Dynamics and Climate Variability in Conflict Zones: A Case Study of Sortony Internally Displaced Camp, Darfur, Sudan

Author

Listed:
  • Abdalrahman Ahmed

    (Institute of Geomatics and Civil Engineering, Faculty of Forestry, University of Sopron, Bajcsy-Zs 4, 9400 Sopron, Hungary
    Department of Forest and Environment, Faculty of Forest Sciences and Technology, University of Gezira, Wad Madani 21222, Sudan)

  • Brian Rotich

    (Faculty of Environmental Studies and Resources Development, Chuka University, Chuka P.O. Box 109-60400, Kenya)

  • Harison K. Kipkulei

    (Centre for Climate Resilience, University of Augsburg, Universitätsstraße 12, 86159 Augsburg, Germany
    Department of Geomatic Engineering and Geospatial Information Systems, Jomo Kenyatta University of Agriculture and Technology, Nairobi P.O. Box 62000-00200, Kenya)

  • Azaria Stephano Lameck

    (Department of Earth Science, Mbeya University of Science and Technology, Mbeya P.O. Box 131, Tanzania)

  • Bence Gallai

    (Institute of Geomatics and Civil Engineering, Faculty of Forestry, University of Sopron, Bajcsy-Zs 4, 9400 Sopron, Hungary)

  • Kornel Czimber

    (Institute of Geomatics and Civil Engineering, Faculty of Forestry, University of Sopron, Bajcsy-Zs 4, 9400 Sopron, Hungary)

Abstract

Understanding vegetation dynamics and climate variability in the vicinity of Internally Displaced Person (IDP) camps is critical due to the high dependency of displaced populations on local natural resources. This study investigates vegetation cover changes and long-term climate variability around the Sortony IDP camp in Darfur, Sudan, using satellite and climate data spanning 1980 to 2024. High-resolution imagery from PlanetScope and Sentinel–2 Level 2A was used to assess vegetation cover changes from 2015 to 2024, while precipitation, temperature, and drought trends were analyzed over 44 years (1980–2024). Vegetation changes were quantified using the Normalized Difference Vegetation Index (NDVI), and drought conditions were assessed through the Standardized Precipitation Evapotranspiration Index (SPEI) at 6-, 9-, and 12-month timescales. Future precipitation predictions were modeled using the Autoregressive Integrated Moving Average (ARIMA) model. The results revealed a substantial increase in vegetative cover: the dense vegetation class increased by 3.50%, moderate vegetation by 17.33%, and low vegetation by 30.22%. In contrast, sparse and non-vegetated areas declined by 4.55% and 46.51%, respectively. The SPEI analysis indicated a marked reduction in drought frequency and severity after 2015, following a period of prolonged drought from 2000 to 2014. Forecasts suggest continued increases in rainfall through 2034, which may further support vegetation regrowth. These findings underscore the complex interplay between climatic factors and human activity in conflict-affected landscapes. The observed vegetation recovery highlights the region’s potential for ecological resilience, reinforcing the urgent need for sustainable land-use planning and climate-adaptive management strategies in humanitarian and post-conflict settings such as Darfur.

Suggested Citation

  • Abdalrahman Ahmed & Brian Rotich & Harison K. Kipkulei & Azaria Stephano Lameck & Bence Gallai & Kornel Czimber, 2025. "Vegetation Dynamics and Climate Variability in Conflict Zones: A Case Study of Sortony Internally Displaced Camp, Darfur, Sudan," Land, MDPI, vol. 14(8), pages 1-22, August.
  • Handle: RePEc:gam:jlands:v:14:y:2025:i:8:p:1680-:d:1728593
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/14/8/1680/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/14/8/1680/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Phumelelani Mbuqwa & Hezekiel Bheki Magagula & Ahmed Mukalazi Kalumba & Gbenga Abayomi Afuye, 2024. "Interdecadal Variations in Agricultural Drought Monitoring Using Land Surface Temperature and Vegetation Indices: A Case of the Amahlathi Local Municipality in South Africa," Sustainability, MDPI, vol. 16(18), pages 1-21, September.
    2. Kevin E. Trenberth & Aiguo Dai & Gerard van der Schrier & Philip D. Jones & Jonathan Barichivich & Keith R. Briffa & Justin Sheffield, 2014. "Global warming and changes in drought," Nature Climate Change, Nature, vol. 4(1), pages 17-22, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Linghui Guo & Yuanyuan Luo & Yao Li & Tianping Wang & Jiangbo Gao & Hebing Zhang & Youfeng Zou & Shaohong Wu, 2023. "Spatiotemporal Changes and the Prediction of Drought Characteristics in a Major Grain-Producing Area of China," Sustainability, MDPI, vol. 15(22), pages 1-19, November.
    2. Daniel Cooley & Steven M. Smith, 2022. "Center Pivot Irrigation Systems as a Form of Drought Risk Mitigation in Humid Regions," NBER Chapters, in: American Agriculture, Water Resources, and Climate Change, pages 135-171, National Bureau of Economic Research, Inc.
    3. Muhammad Amin & Mobushir Riaz Khan & Sher Shah Hassan & Muhammad Imran & Muhammad Hanif & Irfan Ahmad Baig, 2023. "Determining satellite-based evapotranspiration product and identifying relationship with other observed data in Punjab, Pakistan," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(1), pages 23-39, January.
    4. Wang, Han & Xiang, Youzhen & Liao, Zhenqi & Wang, Xin & Zhang, Xueyan & Huang, Xiangyang & Zhang, Fucang & Feng, Li, 2024. "Integrated assessment of water-nitrogen management for winter oilseed rape production in Northwest China," Agricultural Water Management, Elsevier, vol. 298(C).
    5. Yuhong Shuai & Liming Yao, 2021. "Adjustable Robust Optimization for Multi-Period Water Allocation in Droughts Under Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(12), pages 4043-4065, September.
    6. X. Zhang & Y. Yamaguchi, 2014. "Characterization and evaluation of MODIS-derived Drought Severity Index (DSI) for monitoring the 2009/2010 drought over southwestern China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(3), pages 2129-2145, December.
    7. Jinsoo Hwang & Hyunjoon Kim, 2019. "Consequences of a green image of drone food delivery services: The moderating role of gender and age," Business Strategy and the Environment, Wiley Blackwell, vol. 28(5), pages 872-884, July.
    8. Seyed Mohammadreza Mahdavian & Fatemeh Askari & Hamed Kioumarsi & Reza Naseri Harsini & Hushang Dehghanzadeh & Behnaz Saboori, 2025. "Modeling the linkage between climate change, CH4 emissions, and land use with Iran's livestock production: A food security perspective," Natural Resources Forum, Blackwell Publishing, vol. 49(3), pages 2954-2977, August.
    9. Rui Zhang & Taotao Chen & Daocai Chi, 2020. "Global Sensitivity Analysis of the Standardized Precipitation Evapotranspiration Index at Different Time Scales in Jilin Province, China," Sustainability, MDPI, vol. 12(5), pages 1-19, February.
    10. Hong, Minki & Lee, Sang-Hyun & Lee, Seung-Jae & Choi, Jin-Yong, 2021. "Application of high-resolution meteorological data from NCAM-WRF to characterize agricultural drought in small-scale farmlands based on soil moisture deficit," Agricultural Water Management, Elsevier, vol. 243(C).
    11. Shan Jiang & Jian Zhou & Guojie Wang & Qigen Lin & Ziyan Chen & Yanjun Wang & Buda Su, 2022. "Cropland Exposed to Drought Is Overestimated without Considering the CO 2 Effect in the Arid Climatic Region of China," Land, MDPI, vol. 11(6), pages 1-21, June.
    12. Sabine Liebenehm & Ingmar Schumacher & Eric Strobl, 2024. "Rainfall shocks and risk aversion: Evidence from Southeast Asia," American Journal of Agricultural Economics, John Wiley & Sons, vol. 106(1), pages 145-176, January.
    13. D. Chiru Naik & Sagar Rohidas Chavan & P. Sonali, 2023. "Incorporating the climate oscillations in the computation of meteorological drought over India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(3), pages 2617-2646, July.
    14. Zhang, Yuliang & Wu, Zhiyong & Singh, Vijay P. & Lin, Qingxia & Ning, Shaowei & Zhou, Yuliang & Jin, Juliang & Zhou, Rongxing & Ma, Qiang, 2023. "Agricultural drought characteristics in a typical plain region considering irrigation, crop growth, and water demand impacts," Agricultural Water Management, Elsevier, vol. 282(C).
    15. Mohammad Shafi Bhat & Sumira Mir & Hilal Ahmad Parrey & Irshad Ahmad Thoker & Shamim Ahmad Shah, 2024. "Climate change, hailstorm incidence, and livelihood security: a perspective from Kashmir valley India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(3), pages 2803-2827, February.
    16. Erickson, Adam & Nitschke, Craig & Coops, Nicholas & Cumming, Steven & Stenhouse, Gordon, 2015. "Past-century decline in forest regeneration potential across a latitudinal and elevational gradient in Canada," Ecological Modelling, Elsevier, vol. 313(C), pages 94-102.
    17. Eva O. Arceo-Gómez & Danae Hernández-Cortés & Alejandro López-Feldman, 2020. "Droughts and rural households’ wellbeing: evidence from Mexico," Climatic Change, Springer, vol. 162(3), pages 1197-1212, October.
    18. Ding, Yugang & Xu, Jiangmin, 2023. "Global vulnerability of agricultural commodities to climate risk: Evidence from satellite data," Economic Analysis and Policy, Elsevier, vol. 80(C), pages 669-687.
    19. Zhang, Yu & Liu, Xiaohong & Jiao, Wenzhe & Zhao, Liangju & Zeng, Xiaomin & Xing, Xiaoyu & Zhang, Lingnan & Hong, Yixue & Lu, Qiangqiang, 2022. "A new multi-variable integrated framework for identifying flash drought in the Loess Plateau and Qinling Mountains regions of China," Agricultural Water Management, Elsevier, vol. 265(C).
    20. Weili Duan & Bin He & Daniel Nover & Jingli Fan & Guishan Yang & Wen Chen & Huifang Meng & Chuanming Liu, 2016. "Floods and associated socioeconomic damages in China over the last century," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(1), pages 401-413, May.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:14:y:2025:i:8:p:1680-:d:1728593. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.