Author
Listed:
- Sandoval Sarahi
(SECIHTI, Instituto Politécnico Nacional, Durango 34220, DG, Mexico)
- Escobar-Flores Jonathan Gabriel
(CIIDIR Durango, Instituto Politécnico Nacional, Durango 34220, DG, Mexico)
Abstract
We quantified monthly changes in land surface temperature (LST) over the Sierra Madre Occidental (SMO) in Mexico from 2000 to 2024 using MODIS satellite imagery (MOD11B3). The SMO is the longest continuous mountain complex in Mexico, covering an area of 251,648 km 2 . It is an area of great importance for biodiversity conservation, as it is home to numerous endemic flora and fauna species. The Intergovernmental Panel on Climate Change (IPCC) has stated that high mountain areas are among the regions most affected by climate change and are a key element of the water cycle. We calculated an anomaly index by vegetation type in the SMO and applied change detection to spatially identify where changes in LST had taken place. The lowest LST values were in December and January (20 to 25 °C), and the highest LST values occurred in April, May, and June (>40 °C). Change detection applied to the time series showed that the months with the highest positive LST changes were May to July, and that November was notable for increases of up to 5.86 °C. The time series that showed the greatest changes compared to 2000 was the series for 2024, where LST increases were found in all months of the year. The maximun average increase was 6.98 °C from 2000 to June 2005. In general, LST anomalies show a pattern of occurrence in the months of March through July for the three vegetation types distributed in the Sierra Madre Occidental. In the case of the pine forest, which is distributed at 2000 m above sea level, and higher, it was expected that there would be no LST anomalies; however, anomalies were present in all time series for the spring and early summer months. The LST values were validated with in situ data from weather stations using linear regression models. It was found that almost all the values were related, with R 2 > 0.60 ( p < 0.001). In conclusion, the constant increases in LST throughout the SMO are probably related to the loss of 34% of forest cover due to forest fires, logging, land use changes, and increased forest plantations.
Suggested Citation
Sandoval Sarahi & Escobar-Flores Jonathan Gabriel, 2025.
"Spatial Mapping of Thermal Anomalies and Change Detection in the Sierra Madre Occidental, Mexico, from 2000 to 2024,"
Land, MDPI, vol. 14(8), pages 1-19, August.
Handle:
RePEc:gam:jlands:v:14:y:2025:i:8:p:1635-:d:1723613
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:14:y:2025:i:8:p:1635-:d:1723613. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.