IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v14y2025i8p1630-d1723305.html
   My bibliography  Save this article

Predicting Future Built-Up Land Cover from a Yearly Time Series of Satellite-Derived Binary Urban Maps

Author

Listed:
  • Francis D. O’Neill

    (Geospatial Research Laboratory, Engineer Research & Development Center, U.S. Army Corps of Engineers, 7701 Telegraph Road, Alexandria, VA 22315-3864, USA)

  • Nicole M. Wayant

    (Geospatial Research Laboratory, Engineer Research & Development Center, U.S. Army Corps of Engineers, 7701 Telegraph Road, Alexandria, VA 22315-3864, USA)

  • Sarah J. Becker

    (Geospatial Research Laboratory, Engineer Research & Development Center, U.S. Army Corps of Engineers, 7701 Telegraph Road, Alexandria, VA 22315-3864, USA)

Abstract

We compare several methods for predicting future built-up land cover using only a short yearly time series of satellite-derived binary urban maps. Existing methods of built-up expansion forecasting often rely on ancillary datasets such as utility networks, distance to transportation nodes, and population density maps, along with remotely sensed aerial or satellite imagery. Such ancillary datasets are not always available and lack the temporal density of satellite imagery. Moreover, existing work often focuses on quantifying the expected volume of built-up expansion, rather than predicting where exactly that expansion will occur. To address these gaps, we evaluate six methods for the creation of prediction maps showing expected areas of future built-up expansion, using yearly built/not-built maps derived from Sentinel-2 imagery as inputs: Cellular Automata, logistic regression, Support Vector Machines, Random Forests, Convolutional Neural Networks (CNNs), and CNNs with the addition of long short-term memory (ConvLSTM). Of these six, we find CNNs to be the best-performing method, with an average Cohen’s kappa score of 0.73 across nine study sites in the continental United States.

Suggested Citation

  • Francis D. O’Neill & Nicole M. Wayant & Sarah J. Becker, 2025. "Predicting Future Built-Up Land Cover from a Yearly Time Series of Satellite-Derived Binary Urban Maps," Land, MDPI, vol. 14(8), pages 1-18, August.
  • Handle: RePEc:gam:jlands:v:14:y:2025:i:8:p:1630-:d:1723305
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/14/8/1630/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/14/8/1630/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yang, Xin & Zheng, Xin-Qi & Lv, Li-Na, 2012. "A spatiotemporal model of land use change based on ant colony optimization, Markov chain and cellular automata," Ecological Modelling, Elsevier, vol. 233(C), pages 11-19.
    2. Tingting Xu & Dingjie Zhou & Yuhua Li, 2022. "Integrating ANNs and Cellular Automata–Markov Chain to Simulate Urban Expansion with Annual Land Use Data," Land, MDPI, vol. 11(7), pages 1-15, July.
    3. Bo Huang & Chenglin Xie & Richard Tay & Bo Wu, 2009. "Land-Use-Change Modeling Using Unbalanced Support-Vector Machines," Environment and Planning B, , vol. 36(3), pages 398-416, June.
    4. Heather S. Sussman & Sarah J. Becker, 2025. "Automated Global Method to Detect Rapid and Future Urban Areas," Land, MDPI, vol. 14(5), pages 1-21, May.
    5. Nityaranjan Nath & Dhrubajyoti Sahariah & Gowhar Meraj & Jatan Debnath & Pankaj Kumar & Durlov Lahon & Kesar Chand & Majid Farooq & Pankaj Chandan & Suraj Kumar Singh & Shruti Kanga, 2023. "Land Use and Land Cover Change Monitoring and Prediction of a UNESCO World Heritage Site: Kaziranga Eco-Sensitive Zone Using Cellular Automata-Markov Model," Land, MDPI, vol. 12(1), pages 1-21, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pankaj Bajracharya & Selima Sultana, 2022. "Examining the Use of Urban Growth Boundary for Future Urban Expansion of Chattogram, Bangladesh," Sustainability, MDPI, vol. 14(9), pages 1-21, May.
    2. Wang, Han & Tian, Fuan & Wu, Jianxian & Nie, Xin, 2023. "Is China forest landscape restoration (FLR) worth it? A cost-benefit analysis and non-equilibrium ecological view," World Development, Elsevier, vol. 161(C).
    3. Peng Zeng & Sihui Wu & Zongyao Sun & Yujia Zhu & Yuqi Chen & Zhi Qiao & Liangwa Cai, 2021. "Does Rural Production–Living–Ecological Spaces Have a Preference for Regional Endowments? A Case of Beijing-Tianjin-Hebei, China," Land, MDPI, vol. 10(11), pages 1-21, November.
    4. Xinba Li & Weidong Li & Chuanrong Zhang, 2024. "Time-Lag Transiograms and Their Implications for Landscape Change Characterization," Stats, MDPI, vol. 7(4), pages 1-19, December.
    5. Yangyang Yuan & Yuchen Yang & Ruijun Wang & Yuning Cheng, 2022. "Predicting Rural Ecological Space Boundaries in the Urban Fringe Area Based on Bayesian Network: A Case Study in Nanjing, China," Land, MDPI, vol. 11(11), pages 1-24, October.
    6. Michel Opelele Omeno & Ying Yu & Wenyi Fan & Tolerant Lubalega & Chen Chen & Claude Kachaka Sudi Kaiko, 2021. "Analysis of the Impact of Land-Use/Land-Cover Change on Land-Surface Temperature in the Villages within the Luki Biosphere Reserve," Sustainability, MDPI, vol. 13(20), pages 1-23, October.
    7. Meisam Jafari & Hamid Majedi & Seyed Masoud Monavari & Ali Asghar Alesheikh & Mirmasoud Kheirkhah Zarkesh, 2016. "Dynamic Simulation of Urban Expansion Based on Cellular Automata and Logistic Regression Model: Case Study of the Hyrcanian Region of Iran," Sustainability, MDPI, vol. 8(8), pages 1-18, August.
    8. Han, Yu & Jia, Haifeng, 2017. "Simulating the spatial dynamics of urban growth with an integrated modeling approach: A case study of Foshan, China," Ecological Modelling, Elsevier, vol. 353(C), pages 107-116.
    9. Liu, Dongya & Zheng, Xinqi & Zhang, Chunxiao & Wang, Hongbin, 2017. "A new temporal–spatial dynamics method of simulating land-use change," Ecological Modelling, Elsevier, vol. 350(C), pages 1-10.
    10. Yusuyunjiang Mamitimin & Zibibula Simayi & Ayinuer Mamat & Bumairiyemu Maimaiti & Yunfei Ma, 2023. "FLUS Based Modeling of the Urban LULC in Arid and Semi-Arid Region of Northwest China: A Case Study of Urumqi City," Sustainability, MDPI, vol. 15(6), pages 1-14, March.
    11. Shivangi S. Somvanshi & Oshin Bhalla & Phool Kunwar & Madhulika Singh & Prafull Singh, 2020. "Monitoring spatial LULC changes and its growth prediction based on statistical models and earth observation datasets of Gautam Budh Nagar, Uttar Pradesh, India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(2), pages 1073-1091, February.
    12. Zhang, Yan & Chang, Xia & Liu, Yanfang & Lu, Yanchi & Wang, Yiheng & Liu, Yaolin, 2021. "Urban expansion simulation under constraint of multiple ecosystem services (MESs) based on cellular automata (CA)-Markov model: Scenario analysis and policy implications," Land Use Policy, Elsevier, vol. 108(C).
    13. Esther Shupel Ibrahim & Bello Ahmed & Oludunsin Tunrayo Arodudu & Jibril Babayo Abubakar & Bitrus Akila Dang & Mahmoud Ibrahim Mahmoud & Halilu Ahmad Shaba & Sanusi Bello Shamaki, 2022. "Desertification in the Sahel Region: A Product of Climate Change or Human Activities? A Case of Desert Encroachment Monitoring in North-Eastern Nigeria Using Remote Sensing Techniques," Geographies, MDPI, vol. 2(2), pages 1-23, April.
    14. Riao, Dao & Guga, Suri & Bao, Yongbin & Liu, Xingping & Tong, Zhijun & Zhang, Jiquan, 2023. "Non-overlap of suitable areas of agro-climatic resources and main planting areas is the main reason for potato drought disaster in Inner Mongolia, China," Agricultural Water Management, Elsevier, vol. 275(C).
    15. Tengfei Zhao & Jianlin Zhu & Zhiyu Jian & Xian Zhou & Puwei Zhang, 2024. "Effects of the “Urban Double Repairs” Policy on Urban Land-Use Carbon Emission Efficiency," Sustainability, MDPI, vol. 16(23), pages 1-24, November.
    16. Kang Liu & Chaozheng Zhang & Han Zhang & Hao Xu & Wen Xia, 2023. "Spatiotemporal Variation and Dynamic Simulation of Ecosystem Carbon Storage in the Loess Plateau Based on PLUS and InVEST Models," Land, MDPI, vol. 12(5), pages 1-18, May.
    17. Oznur Isinkaralar & Kaan Isinkaralar & Dilara Yilmaz, 2023. "Climate-related spatial reduction risk of agricultural lands on the Mediterranean coast in Türkiye and scenario-based modelling of urban growth," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(11), pages 13199-13217, November.
    18. Liu, Dongya & Zheng, Xinqi & Wang, Hongbin, 2020. "Land-use Simulation and Decision-Support system (LandSDS): Seamlessly integrating system dynamics, agent-based model, and cellular automata," Ecological Modelling, Elsevier, vol. 417(C).
    19. Yi Lu & Shawn Laffan & Chris Pettit & Min Cao, 2020. "Land use change simulation and analysis using a vector cellular automata (CA) model: A case study of Ipswich City, Queensland, Australia," Environment and Planning B, , vol. 47(9), pages 1605-1621, November.
    20. Grzegorz Oleniacz, 2021. "Czekanowski’s Diagram and Spatial Data Cluster Analysis for Planning Sustainable Development of Rural Areas," Sustainability, MDPI, vol. 13(20), pages 1-13, October.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:14:y:2025:i:8:p:1630-:d:1723305. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.