IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v14y2025i8p1620-d1720977.html
   My bibliography  Save this article

Clarifying Influences of Sampling Bias (Concentration) and Locational Errors (Uncertainties) on Precision or Generality of Species Distribution Models

Author

Listed:
  • Brice B. Hanberry

    (United States Department of Agriculture, Forest Service, Rocky Mountain Research Station, Rapid City, SD 57702, USA)

Abstract

Locational errors and sampling bias may produce unrepresentative species distribution models. To decompose the influence of errors, I modeled species distributions of 31 mammal species from georeferenced records and random samples from range maps, with potential sources of errors added or removed, using the random forests algorithm. Errors included the addition of (1) cities, (2) administrative centers, (3) records flagged as potential errors (e.g., outliers), and (4) urban records to range map samples; the removal of (5) flagged records and (6) urban records from georeferenced records; and the addition of (7) random points and (8) clustered points to georeferenced records. I also examined separation between thinned and unthinned (i.e., locally concentrated) records and ocean and land areas. Errors generally did not perturb species distributions, particularly if errors were located within species ranges. The greatest departure relative to unaltered models (mean niche overlap values of 0.96 out of 1) was due to the addition of administrative centers at a 13% error rate. Because locational errors overall do not occur in modern georeferenced records, outliers may provide important samples from undersampled areas. Delineating land from ocean coordinates may require a land layer at the highest available resolution and buffered to match the distance of locational uncertainty for georeferenced records. Predicted areas for species distributions increased along the spectrum of models from concentrated georeferenced records, thinned records, and random samples from range maps. Species distributions modeled with all georeferenced records will have the greatest sampling concentration (to differentiate from bias, because predictive modeling is not hypothesis testing), resulting in model locational precision, whereas species distribution models from random samples of range maps will have locational generality (rather than errors). The risk of removing samples of suitable conditions is the generation of unrepresentative models whereas the benefit of sample removal is slightly more generalized models, but which also may represent overpredictions.

Suggested Citation

  • Brice B. Hanberry, 2025. "Clarifying Influences of Sampling Bias (Concentration) and Locational Errors (Uncertainties) on Precision or Generality of Species Distribution Models," Land, MDPI, vol. 14(8), pages 1-19, August.
  • Handle: RePEc:gam:jlands:v:14:y:2025:i:8:p:1620-:d:1720977
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/14/8/1620/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/14/8/1620/
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:14:y:2025:i:8:p:1620-:d:1720977. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.