IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v14y2025i7p1472-d1702234.html
   My bibliography  Save this article

Application of Semi-Supervised Clustering with Membership Information and Deep Learning in Landslide Susceptibility Assessment

Author

Listed:
  • Hua Xia

    (Chongqing Jinfo Mountain Karst Ecosystem National Observation and Research Station, School of Geographical Sciences, Southwest University, Chongqing 400715, China
    Chongqing Engineering Research Center for Remote Sensing Big Data Application, Southwest University, Chongqing 400715, China)

  • Zili Qin

    (Chongqing Jinfo Mountain Karst Ecosystem National Observation and Research Station, School of Geographical Sciences, Southwest University, Chongqing 400715, China
    Chongqing Engineering Research Center for Remote Sensing Big Data Application, Southwest University, Chongqing 400715, China)

  • Yuanxin Tong

    (Chongqing Jinfo Mountain Karst Ecosystem National Observation and Research Station, School of Geographical Sciences, Southwest University, Chongqing 400715, China
    Chongqing Engineering Research Center for Remote Sensing Big Data Application, Southwest University, Chongqing 400715, China)

  • Yintian Li

    (Chongqing Jinfo Mountain Karst Ecosystem National Observation and Research Station, School of Geographical Sciences, Southwest University, Chongqing 400715, China
    Chongqing Engineering Research Center for Remote Sensing Big Data Application, Southwest University, Chongqing 400715, China)

  • Rui Zhang

    (State Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Key Laboratory of Remote Sensing of Gansu Province, Heihe Remote Sensing Experimental Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China)

  • Hongxia Luo

    (Chongqing Jinfo Mountain Karst Ecosystem National Observation and Research Station, School of Geographical Sciences, Southwest University, Chongqing 400715, China
    Chongqing Engineering Research Center for Remote Sensing Big Data Application, Southwest University, Chongqing 400715, China)

Abstract

Landslide susceptibility assessment (LSA) plays a crucial role in disaster prevention and mitigation. Traditional random selection of non-landslide samples (labeled as 0) suffers from poor representativeness and high randomness, which may include potential landslide areas and affect the accuracy of LSA. To address this issue, this study proposes a novel Landslide Susceptibility Index–based Semi-supervised Fuzzy C-Means (LSI-SFCM) sampling strategy combining membership degrees. It utilizes landslide and unlabeled samples to map landslide membership degree via Semi-supervised Fuzzy C-Means (SFCM). Non-landslide samples are selected from low-membership regions and assigned membership values as labels. This study developed three models for LSA—Convolutional Neural Network (CNN), U-Net, and Support Vector Machine (SVM), and compared three negative sample sampling strategies: Random Sampling (RS), SFCM (samples labeled 0), and LSI-SFCM. The results demonstrate that the LSI-SFCM effectively enhances the representativeness and diversity of negative samples, improving the predictive performance and classification reliability. Deep learning models using LSI-SFCM performed with superior predictive capability. The CNN model achieved an area under the receiver operating characteristic curve (AUC) of 95.52% and a prediction rate curve value of 0.859. Furthermore, compared with the traditional unsupervised fuzzy C-means (FCM) clustering, SFCM produced a more reasonable distribution of landslide membership degrees, better reflecting the distinction between landslides and non-landslides. This approach enhances the reliability of LSA and provides a scientific basis for disaster prevention and mitigation authorities.

Suggested Citation

  • Hua Xia & Zili Qin & Yuanxin Tong & Yintian Li & Rui Zhang & Hongxia Luo, 2025. "Application of Semi-Supervised Clustering with Membership Information and Deep Learning in Landslide Susceptibility Assessment," Land, MDPI, vol. 14(7), pages 1-27, July.
  • Handle: RePEc:gam:jlands:v:14:y:2025:i:7:p:1472-:d:1702234
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/14/7/1472/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/14/7/1472/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yumiao Wang & Xueling Wu & Zhangjian Chen & Fu Ren & Luwei Feng & Qingyun Du, 2019. "Optimizing the Predictive Ability of Machine Learning Methods for Landslide Susceptibility Mapping Using SMOTE for Lishui City in Zhejiang Province, China," IJERPH, MDPI, vol. 16(3), pages 1-27, January.
    2. Fabio Luino & Mariano Barriendos & Fabrizio Terenzio Gizzi & Ruediger Glaser & Christoph Gruetzner & Walter Palmieri & Sabina Porfido & Heather Sangster & Laura Turconi, 2023. "Historical Data for Natural Hazard Risk Mitigation and Land Use Planning," Land, MDPI, vol. 12(9), pages 1-21, September.
    3. Yongwei Li & Xianmin Wang & Hang Mao, 2020. "Influence of human activity on landslide susceptibility development in the Three Gorges area," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(3), pages 2115-2151, December.
    4. Schneider, Matthew J. & Gorr, Wilpen L., 2015. "ROC-based model estimation for forecasting large changes in demand," International Journal of Forecasting, Elsevier, vol. 31(2), pages 253-262.
    5. Moritz Gamperl & John Singer & Carolina Garcia-Londoño & Lisa Seiler & Julián Castañeda & David Cerón-Hernandez & Kurosch Thuro, 2023. "Recommendations for Landslide Early Warning Systems in Informal Settlements Based on a Case Study in Medellín, Colombia," Land, MDPI, vol. 12(7), pages 1-22, July.
    6. Chuhan Wang & Qigen Lin & Leibin Wang & Tong Jiang & Buda Su & Yanjun Wang & Sanjit Kumar Mondal & Jinlong Huang & Ying Wang, 2022. "The influences of the spatial extent selection for non-landslide samples on statistical-based landslide susceptibility modelling: a case study of Anhui Province in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(3), pages 1967-1988, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jie Liu & Zhen Wu & Huiwen Zhang, 2021. "Analysis of Changes in Landslide Susceptibility according to Land Use over 38 Years in Lixian County, China," Sustainability, MDPI, vol. 13(19), pages 1-23, September.
    2. Haipeng Zhou & Chenglin Mu & Bo Yang & Gang Huang & Jinpeng Hong, 2025. "Evaluating Landslide Hazard in Western Sichuan: Integrating Rainfall and Geospatial Factors Using a Coupled Information Value–Geographic Logistic Regression Model," Sustainability, MDPI, vol. 17(4), pages 1-30, February.
    3. Döpke, Jörg & Fritsche, Ulrich & Pierdzioch, Christian, 2017. "Predicting recessions with boosted regression trees," International Journal of Forecasting, Elsevier, vol. 33(4), pages 745-759.
    4. Jihyun Yang & Jeffrey Shragge & Aaron J. Girard & Edgard Gonzales & Javier Ticona & Armando Minaya & Richard Krahenbuhl, 2023. "Seismic Characterization of a Landslide Complex: A Case History from Majes, Peru," Sustainability, MDPI, vol. 15(18), pages 1-15, September.
    5. Siti Norsakinah Selamat & Nuriah Abd Majid & Aizat Mohd Taib, 2023. "A Comparative Assessment of Sampling Ratios Using Artificial Neural Network (ANN) for Landslide Predictive Model in Langat River Basin, Selangor, Malaysia," Sustainability, MDPI, vol. 15(1), pages 1-21, January.
    6. Guorui Gao & Futao Wang & Zhenqing Wang & Qing Zhao & Litao Wang & Jinfeng Zhu & Wenliang Liu & Gang Qin & Yanfang Hou, 2024. "Multi-Scale Earthquake Damaged Building Feature Set," Data, MDPI, vol. 9(7), pages 1-19, June.
    7. Mohib Ullah & Haijun Qiu & Wenchao Huangfu & Dongdong Yang & Yingdong Wei & Bingzhe Tang, 2025. "Integrated Machine Learning Approaches for Landslide Susceptibility Mapping Along the Pakistan–China Karakoram Highway," Land, MDPI, vol. 14(1), pages 1-29, January.
    8. Kaiwan K. Fatah & Yaseen T. Mustafa & Imaddadin O. Hassan, 2024. "Geoinformatics-based frequency ratio, analytic hierarchy process and hybrid models for landslide susceptibility zonation in Kurdistan Region, Northern Iraq," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(3), pages 6977-7014, March.
    9. Laura Turconi & Barbara Bono & Rebecca Genta & Fabio Luino, 2024. "The Effects of Flood Damage on Urban Road Networks in Italy: The Critical Function of Underpasses," Land, MDPI, vol. 13(9), pages 1-30, September.
    10. Shizhuang Chen & Weiya Xu & Xiaoyi Xu & Long Yan & Weiwei Wu & Wei-Chau Xie, 2025. "Deformation response and mechanism induced by rainfall of the Zhoujia landslide in Southwestern China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(7), pages 8039-8059, April.
    11. Shaohan Zhang & Shucheng Tan & Yongqi Sun & Duanyu Ding & Wei Yang, 2024. "Risk Mapping of Geological Hazards in Plateau Mountainous Areas Based on Multisource Remote Sensing Data Extraction and Machine Learning (Fuyuan, China)," Land, MDPI, vol. 13(9), pages 1-25, August.
    12. Yue Wang & Deliang Sun & Haijia Wen & Hong Zhang & Fengtai Zhang, 2020. "Comparison of Random Forest Model and Frequency Ratio Model for Landslide Susceptibility Mapping (LSM) in Yunyang County (Chongqing, China)," IJERPH, MDPI, vol. 17(12), pages 1-39, June.
    13. Anna Derkacheva & Valentin Golosov & Sergey Shvarev, 2024. "Hazardous exogenous geological processes in the mountains under the pressure of human activity: 15-year observations from a natural landscape to a large ski resort," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(3), pages 2847-2868, February.
    14. Asia Bernardi & Michele Licata & Francesco Seitone & Giandomenico Fubelli, 2024. "MAGUS (Model for the Analysis of Geomorphological Urban Systems): From Conception to Validation on the Historic City Center of Turin (Italy)," Land, MDPI, vol. 13(11), pages 1-20, November.
    15. Thong Xuan Tran & Sihong Liu & Hang Ha & Quynh Duy Bui & Long Quoc Nguyen & Dinh Quoc Nguyen & Cong-Ty Trinh & Chinh Luu, 2024. "A Spatial Landslide Risk Assessment Based on Hazard, Vulnerability, Exposure, and Adaptive Capacity," Sustainability, MDPI, vol. 16(21), pages 1-37, November.
    16. Haoran Fang & Yun Shao & Chou Xie & Bangsen Tian & Chaoyong Shen & Yu Zhu & Yihong Guo & Ying Yang & Guanwen Chen & Ming Zhang, 2023. "A New Approach to Spatial Landslide Susceptibility Prediction in Karst Mining Areas Based on Explainable Artificial Intelligence," Sustainability, MDPI, vol. 15(4), pages 1-22, February.
    17. Emal Ahmad Hussainzad & Zhonghua Gou, 2024. "Climate Risk and Vulnerability Assessment in Informal Settlements of the Global South: A Critical Review," Land, MDPI, vol. 13(9), pages 1-63, August.
    18. Haishan Wang & Jian Xu & Shucheng Tan & Jinxuan Zhou, 2023. "Landslide Susceptibility Evaluation Based on a Coupled Informative–Logistic Regression Model—Shuangbai County as an Example," Sustainability, MDPI, vol. 15(16), pages 1-17, August.
    19. Fan Liu & Yahong Deng & Tianyu Zhang & Faqiao Qian & Nan Yang & Hongquan Teng & Wei Shi & Xue Han, 2024. "Landslide Distribution and Development Characteristics in the Beiluo River Basin," Land, MDPI, vol. 13(7), pages 1-28, July.
    20. Francisco Javier Torrijo & Santiago Álvarez & Julio Garzón-Roca, 2024. "A Case Study of a Macro-Landslide in the High Mountain Areas of the Ecuadorian Andes: “La Cría” at the Azuay Province (Ecuador)," Land, MDPI, vol. 13(12), pages 1-23, November.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:14:y:2025:i:7:p:1472-:d:1702234. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.