IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v14y2025i7p1472-d1702234.html
   My bibliography  Save this article

Application of Semi-Supervised Clustering with Membership Information and Deep Learning in Landslide Susceptibility Assessment

Author

Listed:
  • Hua Xia

    (Chongqing Jinfo Mountain Karst Ecosystem National Observation and Research Station, School of Geographical Sciences, Southwest University, Chongqing 400715, China
    Chongqing Engineering Research Center for Remote Sensing Big Data Application, Southwest University, Chongqing 400715, China)

  • Zili Qin

    (Chongqing Jinfo Mountain Karst Ecosystem National Observation and Research Station, School of Geographical Sciences, Southwest University, Chongqing 400715, China
    Chongqing Engineering Research Center for Remote Sensing Big Data Application, Southwest University, Chongqing 400715, China)

  • Yuanxin Tong

    (Chongqing Jinfo Mountain Karst Ecosystem National Observation and Research Station, School of Geographical Sciences, Southwest University, Chongqing 400715, China
    Chongqing Engineering Research Center for Remote Sensing Big Data Application, Southwest University, Chongqing 400715, China)

  • Yintian Li

    (Chongqing Jinfo Mountain Karst Ecosystem National Observation and Research Station, School of Geographical Sciences, Southwest University, Chongqing 400715, China
    Chongqing Engineering Research Center for Remote Sensing Big Data Application, Southwest University, Chongqing 400715, China)

  • Rui Zhang

    (State Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Key Laboratory of Remote Sensing of Gansu Province, Heihe Remote Sensing Experimental Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China)

  • Hongxia Luo

    (Chongqing Jinfo Mountain Karst Ecosystem National Observation and Research Station, School of Geographical Sciences, Southwest University, Chongqing 400715, China
    Chongqing Engineering Research Center for Remote Sensing Big Data Application, Southwest University, Chongqing 400715, China)

Abstract

Landslide susceptibility assessment (LSA) plays a crucial role in disaster prevention and mitigation. Traditional random selection of non-landslide samples (labeled as 0) suffers from poor representativeness and high randomness, which may include potential landslide areas and affect the accuracy of LSA. To address this issue, this study proposes a novel Landslide Susceptibility Index–based Semi-supervised Fuzzy C-Means (LSI-SFCM) sampling strategy combining membership degrees. It utilizes landslide and unlabeled samples to map landslide membership degree via Semi-supervised Fuzzy C-Means (SFCM). Non-landslide samples are selected from low-membership regions and assigned membership values as labels. This study developed three models for LSA—Convolutional Neural Network (CNN), U-Net, and Support Vector Machine (SVM), and compared three negative sample sampling strategies: Random Sampling (RS), SFCM (samples labeled 0), and LSI-SFCM. The results demonstrate that the LSI-SFCM effectively enhances the representativeness and diversity of negative samples, improving the predictive performance and classification reliability. Deep learning models using LSI-SFCM performed with superior predictive capability. The CNN model achieved an area under the receiver operating characteristic curve (AUC) of 95.52% and a prediction rate curve value of 0.859. Furthermore, compared with the traditional unsupervised fuzzy C-means (FCM) clustering, SFCM produced a more reasonable distribution of landslide membership degrees, better reflecting the distinction between landslides and non-landslides. This approach enhances the reliability of LSA and provides a scientific basis for disaster prevention and mitigation authorities.

Suggested Citation

  • Hua Xia & Zili Qin & Yuanxin Tong & Yintian Li & Rui Zhang & Hongxia Luo, 2025. "Application of Semi-Supervised Clustering with Membership Information and Deep Learning in Landslide Susceptibility Assessment," Land, MDPI, vol. 14(7), pages 1-27, July.
  • Handle: RePEc:gam:jlands:v:14:y:2025:i:7:p:1472-:d:1702234
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/14/7/1472/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/14/7/1472/
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:14:y:2025:i:7:p:1472-:d:1702234. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.