Author
Listed:
- Xiaoqi Ma
(Faculty of Humanities, School of Design and Built Environment, Architecture, Curtin University, Kent St., Bentley Campus, Bentley, WA 6102, Australia)
- Boon Lay Ong
(Faculty of Humanities, School of Design and Built Environment, Architecture, Curtin University, Kent St., Bentley Campus, Bentley, WA 6102, Australia)
Abstract
Urban vegetation plays a pivotal role in mitigating the Urban Heat Island (UHI) effect and enhancing ecological resilience amid accelerating global urbanization. This study investigates the spatiotemporal dynamics of vegetation coverage and its interplay with climatic factors and surface thermal patterns in Perth, Australia, from 2014 to 2023, leveraging multi-source remote sensing data, geostatistical modeling, and spatial analysis. Utilizing Landsat-derived Normalized Difference Vegetation Index (NDVI), Land Surface Temperature (LST), and Land Use/Land Cover (LULC) datasets, combined with meteorological statistics, the research quantifies vegetation trends, evaluates seasonal and annual climate correlations, and stratifies UHI intensity zones. Key findings reveal the following: (1) Perth’s vegetation cover has decreased over the past decade, and LST has increased, with a negative correlation between the two. (2) NDVI demonstrated a strong negative correlation with annual maximum temperature (r = −0.754) and a positive correlation with precipitation (r = 0.779). (3) Seasonal analysis of NDVI-LST relationships showed intensified cooling effects in summer (r = −0.527) compared to winter (r = −0.180), aligning with evapotranspiration dynamics in Mediterranean climates. (4) Spatial stratification of LST identified “low-temperature green islands” in forested regions, contrasting sharply with high-temperature zones in built-up areas. This study suggests that vegetation optimization—particularly preserving urban forests and integrating green infrastructure—can effectively mitigate UHI impacts, thus reducing surface temperatures. In particular, it shows that urban greenery is a more significant factor towards lowering UHI than urban density. This research advances the understanding of how vegetation optimization can mitigate thermal stress in growing urbanization and provides quantitative evidence for climate-adaptive urban planning.
Suggested Citation
Xiaoqi Ma & Boon Lay Ong, 2025.
"Optimizing Urban Greenery for Climate Resilience: A Case Study in Perth, Australia,"
Land, MDPI, vol. 14(5), pages 1-19, May.
Handle:
RePEc:gam:jlands:v:14:y:2025:i:5:p:1088-:d:1657755
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:14:y:2025:i:5:p:1088-:d:1657755. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.