IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v14y2025i4p849-d1633904.html
   My bibliography  Save this article

Exploring Suitable Urban Plant Structures for Carbon-Sink Capacities

Author

Listed:
  • Hyeseon Eom

    (Department of Forestry and Landscape Architecture, Graduate School, Konkuk University, Seoul 05029, Republic of Korea)

  • Yeeun Shin

    (Laboratory of Spatial Design Research, Konkuk University, Seoul 05029, Republic of Korea)

  • Sang-Woo Lee

    (Department of Forestry and Landscape Architecture, Konkuk University, Seoul 05029, Republic of Korea)

  • Kyungjin An

    (Department of Forestry and Landscape Architecture, Konkuk University, Seoul 05029, Republic of Korea)

Abstract

Urban parks, a type of urban green space, help mitigate environmental pollution and climate change by absorbing and storing atmospheric carbon. Optimizing their carbon-sink capacity requires thoughtful plant community design considering multiple factors. This study analyzed South Korean urban parks using QGIS and i-Tree Eco, integrating satellite imagery with field surveys at both spatial and tree scales. Park spaces were classified into six types based on the biotope criteria established in this study. Random forest regression was applied to each type to identify key variables influencing annual carbon sequestration and storage. The relationship between maturity and sequestration was examined for ten dominant tree species, offering insights for plant selection. Higher tree coverage and more deciduous species were linked to efficiency in carbon sequestration and storage. While variable importance varied slightly across biotope types, tree density was most influential for sequestration, and diameter at breast height and age were key for storage. These findings provide integrated insights into short-term sequestration and long-term storage, as well as strategic directions for structuring plant communities in urban ecosystems. The study offers empirical evidence for designing carbon-efficient urban parks, contributing to sustainable landscape strategies.

Suggested Citation

  • Hyeseon Eom & Yeeun Shin & Sang-Woo Lee & Kyungjin An, 2025. "Exploring Suitable Urban Plant Structures for Carbon-Sink Capacities," Land, MDPI, vol. 14(4), pages 1-16, April.
  • Handle: RePEc:gam:jlands:v:14:y:2025:i:4:p:849-:d:1633904
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/14/4/849/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/14/4/849/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:14:y:2025:i:4:p:849-:d:1633904. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.