Author
Listed:
- Yanling Zhao
(College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China)
- Shenshen Ren
(College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China)
- Yanjie Tang
(College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China)
Abstract
Coal mining disturbances in semi-arid grasslands affect land surface phenology (LSP), impacting ecosystem functions, restoration target setting, and carbon sequestration; however, the magnitude and spatial extent of these disturbances and their detectability across vegetation indices (VIs), remain insufficiently constrained. We developed and applied a streamlined quantitative framework to delineate the extent and intensity of mining-induced phenological disturbance and to compare the sensitivity and stability of commonly used VIs. Using Harmonized Landsat Sentinel (HLS) surface reflectance data over the Yimin mine, we reconstructed multitemporal VI trajectories and derived phenological metrics; directional phenology gradients were used to delineate disturbance, and VI responsiveness was evaluated via mean difference (MD) and standard deviation (SD) between affected and control areas. Research findings indicate that the impact of mining extends to an area approximately four times the size of the mining site, with the start of season (SOS) in affected areas occurring about 10 days later than in unaffected areas. Responses varied markedly among VIs, with the Modified Soil-Adjusted Vegetation Index (MSAVI) exhibiting the highest spectral stability under disturbance. This framework yields an information-rich quantification of phenological impacts attributable to mining and provides operational guidance for index selection and the prioritization of restoration and environmental management in semi-arid mining landscapes.
Suggested Citation
Yanling Zhao & Shenshen Ren & Yanjie Tang, 2025.
"Quantifying Mining-Induced Phenological Disturbance and Soil Moisture Regulation in Semi-Arid Grasslands Using HLS Time Series,"
Land, MDPI, vol. 14(10), pages 1-19, October.
Handle:
RePEc:gam:jlands:v:14:y:2025:i:10:p:2011-:d:1766311
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:14:y:2025:i:10:p:2011-:d:1766311. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.