IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v12y2023i7p1447-d1198371.html
   My bibliography  Save this article

Analyzing the Land Use and Cover Change Inside and Outside China’s Ecological Function Area

Author

Listed:
  • Yajuan Wang

    (School of Public Administration, Sichuan University, Chengdu 610065, China)

  • Yongheng Rao

    (School of Public Administration, Sichuan University, Chengdu 610065, China)

  • Hongbo Zhu

    (School of Public Administration, Sichuan University, Chengdu 610065, China)

Abstract

The establishment of nature reserves and ecological function areas is crucial for preserving the natural environment and the invaluable services provided by ecosystems. In our study, we conducted a comprehensive analysis using the 2011–2020 Chinese land cover dataset to examine the impact of ecological function areas on regional land use and cover change. This analysis allowed us to quantify and visualize the intensity, aggregation effects, and transformation paths of land cover change while considering China’s ecological function areas. Our findings highlight notable disparities in land cover types between the ecological function area and its surroundings. Within the ecological function area, forest and grassland dominate, constituting 67% of the total land cover. In contrast, outside the ecological function area, there is a greater presence of wasteland, in addition to forest and grassland. Moreover, the abundance of impervious surfaces, which are closely linked to human activities, is significantly higher outside the ecological function area, almost double the amount found inside. By examining specific land cover types, we observed that forests exhibit the least change within the ecological function area, whereas croplands experience the least change outside. Throughout the study period, approximately 8.1% of land cover pixels underwent changes, with some areas displaying a frequency of change reaching up to 2. Interestingly, the number of high-frequency land use and cover change pixels inside the ecological function area is only half of the outside. Notably, a higher percentage of impervious surfaces within the ecological function area (0.13%) were converted into cropland compared to the outside (0.07%). Understanding the dynamics of land cover change within China’s ecological function areas provides valuable insights for effective land resource management and planning. It enables us to make informed decisions to ensure the sustainable development and conservation of these areas.

Suggested Citation

  • Yajuan Wang & Yongheng Rao & Hongbo Zhu, 2023. "Analyzing the Land Use and Cover Change Inside and Outside China’s Ecological Function Area," Land, MDPI, vol. 12(7), pages 1-14, July.
  • Handle: RePEc:gam:jlands:v:12:y:2023:i:7:p:1447-:d:1198371
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/12/7/1447/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/12/7/1447/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fuwei Qiao & Yongping Bai & Lixia Xie & Xuedi Yang & Shuaishuai Sun, 2021. "Spatio-Temporal Characteristics of Landscape Ecological Risks in the Ecological Functional Zone of the Upper Yellow River, China," IJERPH, MDPI, vol. 18(24), pages 1-19, December.
    2. William F. Laurance & D. Carolina Useche & Julio Rendeiro & Margareta Kalka & Corey J. A. Bradshaw & Sean P. Sloan & Susan G. Laurance & Mason Campbell & Kate Abernethy & Patricia Alvarez & Victor Arr, 2012. "Averting biodiversity collapse in tropical forest protected areas," Nature, Nature, vol. 489(7415), pages 290-294, September.
    3. Wu, Jian & Gong, Yazhen & Wu, JunJie, 2018. "Spatial distribution of nature reserves in China: Driving forces in the past and conservation challenges in the future," Land Use Policy, Elsevier, vol. 77(C), pages 31-42.
    4. Keyue Yuan & Fei Li & Haijuan Yang & Yiming Wang, 2019. "The Influence of Land Use Change on Ecosystem Service Value in Shangzhou District," IJERPH, MDPI, vol. 16(8), pages 1-13, April.
    5. Yajuan Wang & Yongheng Rao & Hongbo Zhu, 2022. "Revealing the Impact of Protected Areas on Land Cover Volatility in China," Land, MDPI, vol. 11(8), pages 1-16, August.
    6. Shannon M. Sterling & Agnès Ducharne & Jan Polcher, 2013. "The impact of global land-cover change on the terrestrial water cycle," Nature Climate Change, Nature, vol. 3(4), pages 385-390, April.
    7. Immerzeel, Bart & Vermaat, Jan E. & Juutinen, Artti & Pouta, Eija & Artell, Janne, 2022. "Appreciation of Nordic landscapes and how the bioeconomy might change that: Results from a discrete choice experiment," Land Use Policy, Elsevier, vol. 113(C).
    8. Linlin Dai & Zixin Zhan & Yeshuo Shu & Xiao Rong, 2022. "Land Use Change in the Cross-Boundary Regions of a Metropolitan Area: A Case Study of Tongzhou-Wuqing-Langfang," Land, MDPI, vol. 11(2), pages 1-22, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yajuan Wang & Yongheng Rao & Hongbo Zhu, 2022. "Revealing the Impact of Protected Areas on Land Cover Volatility in China," Land, MDPI, vol. 11(8), pages 1-16, August.
    2. Cheng He & Kangning Xiong & Yongkuan Chi & Shuzhen Song & Jinzhong Fang & Shuyu He, 2022. "Effects of Landscape Type Change on Spatial and Temporal Evolution of Ecological Assets in a Karst Plateau-Mountain Area," IJERPH, MDPI, vol. 19(8), pages 1-17, April.
    3. Bingkui Qiu & Jinjiang Yao & Siyu Han & Zhe Zhu, 2022. "Spatio-Temporal Variation of Habitat Quality for Bird Species in China Caused by Land Use Change during 1995–2015," Sustainability, MDPI, vol. 14(16), pages 1-12, August.
    4. Dimas de Barros Santiago & Humberto Alves Barbosa & Washington Luiz Félix Correia Filho & José Francisco de Oliveira-Júnior & Franklin Paredes-Trejo & Catarina de Oliveira Buriti, 2022. "Variability of Water Use Efficiency Associated with Climate Change in the Extreme West of Bahia," Sustainability, MDPI, vol. 14(23), pages 1-13, November.
    5. Qinghe Zhao & Shengyan Ding & Xiaoyu Ji & Zhendong Hong & Mengwen Lu & Peng Wang, 2021. "Relative Contribution of the Xiaolangdi Dam to Runoff Changes in the Lower Yellow River," Land, MDPI, vol. 10(5), pages 1-21, May.
    6. Matthew D. Senyshen & Dongmei Chen, 2023. "The Impact of Land Cover Change on Surface Water Temperature of Small Lakes in Eastern Ontario from 1985 to 2020," Land, MDPI, vol. 12(3), pages 1-18, February.
    7. Marcello Schiavina & Michele Melchiorri & Christina Corbane & Aneta J. Florczyk & Sergio Freire & Martino Pesaresi & Thomas Kemper, 2019. "Multi-Scale Estimation of Land Use Efficiency (SDG 11.3.1) across 25 Years Using Global Open and Free Data," Sustainability, MDPI, vol. 11(20), pages 1-25, October.
    8. Carlos Rosero & Xosé Otero & Cinthya Bravo & Catherine Frey, 2023. "Multitemporal Incidence of Landscape Fragmentation in a Protected Area of Central Andean Ecuador," Land, MDPI, vol. 12(2), pages 1-21, February.
    9. Fuli Wang & Wei Fu & Jiancheng Chen, 2022. "Spatial–Temporal Evolution of Ecosystem Service Value in Yunnan Based on Land Use," Land, MDPI, vol. 11(12), pages 1-15, December.
    10. Sai Hu & Longqian Chen & Long Li & Bingyi Wang & Lina Yuan & Liang Cheng & Ziqi Yu & Ting Zhang, 2019. "Spatiotemporal Dynamics of Ecosystem Service Value Determined by Land-Use Changes in the Urbanization of Anhui Province, China," IJERPH, MDPI, vol. 16(24), pages 1-18, December.
    11. Yajuan Wang & Xi Wu & Hongbo Zhu, 2022. "Spatio-Temporal Pattern and Spatial Disequilibrium of Cultivated Land Use Efficiency in China: An Empirical Study Based on 342 Prefecture-Level Cities," Land, MDPI, vol. 11(10), pages 1-15, October.
    12. Cong Zhang & Xiaojun Yao & Guoyu Wang & Huian Jin & Te Sha & Xinde Chu & Juan Zhang & Juan Cao, 2022. "Temporal and Spatial Variation of Land Use and Vegetation in the Three–North Shelter Forest Program Area from 2000 to 2020," Sustainability, MDPI, vol. 14(24), pages 1-21, December.
    13. Cecilia Parracciani & Robert Buitenwerf & Jens-Christian Svenning, 2023. "Impacts of Climate Change on Vegetation in Kenya: Future Projections and Implications for Protected Areas," Land, MDPI, vol. 12(11), pages 1-20, November.
    14. Dilayda Soylu Pekpostalci & Rifat Tur & Ali Danandeh Mehr & Mohammad Amin Vazifekhah Ghaffari & Dominika Dąbrowska & Vahid Nourani, 2023. "Drought Monitoring and Forecasting across Turkey: A Contemporary Review," Sustainability, MDPI, vol. 15(7), pages 1-23, March.
    15. Correa, Alicia & Forero, Jorge & Marco Renau, Jorge & Lizarazo, Ivan & Mulligan, Mark & Codato, Daniele, 2023. "Advancing spatial decision-making in a transboundary catchment through multidimensional ecosystem services assessment," Ecosystem Services, Elsevier, vol. 64(C).
    16. Yiming Wang & Yunfeng Hu & Xiaoyu Niu & Huimin Yan & Lin Zhen, 2022. "Land Use/Cover Change and Its Driving Mechanism in Thailand from 2000 to 2020," Land, MDPI, vol. 11(12), pages 1-22, December.
    17. Andrea Santangeli & Benjamin Weigel & Laura H. Antão & Elina Kaarlejärvi & Maria Hällfors & Aleksi Lehikoinen & Andreas Lindén & Maija Salemaa & Tiina Tonteri & Päivi Merilä & Kristiina Vuorio & Otso , 2023. "Mixed effects of a national protected area network on terrestrial and freshwater biodiversity," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    18. Ze Zhou & Bin Quan & Zhiwei Deng, 2023. "Effects of Land Use Changes on Ecosystem Service Value in Xiangjiang River Basin, China," Sustainability, MDPI, vol. 15(3), pages 1-18, January.
    19. Zhifeng Zhang & Yuping Tang & Hongyi Pan & Caiyi Yao & Tianyi Zhang, 2022. "Assessment of the Ecological Protection Effectiveness of Protected Areas Using Propensity Score Matching: A Case Study in Sichuan, China," IJERPH, MDPI, vol. 19(8), pages 1-15, April.
    20. Christina Bogner & Bumsuk Seo & Dorian Rohner & Björn Reineking, 2018. "Classification of rare land cover types: Distinguishing annual and perennial crops in an agricultural catchment in South Korea," PLOS ONE, Public Library of Science, vol. 13(1), pages 1-22, January.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:12:y:2023:i:7:p:1447-:d:1198371. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.