Author
Listed:
- Elaheh TaghaviGhalehsari
(Department of Civil Engineering, Islamic Azad University, Neka 4841186114, Iran)
- Hassan Kardgar
(Department of Civil Engineering, Rouzbahan University, Sari 4817939945, Iran)
- Ali Hasanzadeh
(Department of Geotechnical Engineering, Babol Noshirvani University of Technology, P.O. Box 484, Babol 4714871167, Iran)
Abstract
Sustainable pavement design requires a balanced consideration of economic, environmental, and social impacts. In line with Federal Highway Administration (FHWA) guidelines for sustainable roadway infrastructure, incorporating recycled materials such as reclaimed asphalt pavement (RAP), recycled pavement material (RPM), recycled asphalt shingles (RASs), and warm-mix asphalt (WMA) has been shown to reduce natural resource depletion while promoting circular construction practices. This study investigates the structural performance of Portland cement concrete (PCC) pavements constructed on RAP and RPM base layers. A series of design scenarios was modeled using site-specific laboratory and field data—particularly subgrade soil properties and climatic conditions—from El Paso and San Antonio, Texas. The analysis incorporates unsaturated soil parameters and follows the performance thresholds set by the Mechanistic-Empirical Pavement Design Guide (MEPDG). Findings indicate that concrete mixture design, pavement structure, and local weather conditions are the primary drivers of distress in jointed plain concrete pavements (JPCPs). However, subsoil characteristics have a significant impact on joint faulting in JPCP and punchout occurrences in continuously reinforced concrete pavements (CRCPs), especially in thinner sections. Notably, the use of up to 50% recycled material in the base layer had minimal adverse effects on pavement performance, underscoring its viability as a sustainable design strategy for rigid pavements.
Suggested Citation
Elaheh TaghaviGhalehsari & Hassan Kardgar & Ali Hasanzadeh, 2025.
"Behavioral Analysis of Rigid Pavements Utilizing Recycled Base Layers,"
J, MDPI, vol. 8(3), pages 1-18, September.
Handle:
RePEc:gam:jjopen:v:8:y:2025:i:3:p:34-:d:1740334
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jjopen:v:8:y:2025:i:3:p:34-:d:1740334. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.