IDEAS home Printed from https://ideas.repec.org/a/gam/jijfss/v13y2025i4p186-d1764124.html
   My bibliography  Save this article

Spot Volatility Measurement Using a Change-Point Duration Model in the High-Frequency Market

Author

Listed:
  • Zhicheng Li

    (School of Economics and Trade, Hunan University, Changsha 410079, China)

  • Haipeng Xing

    (Department of Applied Math, Stony Brook University, Stony Brook, NY 11794, USA)

  • Yan Wang

    (Business School, Beijing Normal University, Beijing 100875, China)

Abstract

Modeling high-frequency volatility is an important topic of market microstructure, as it provides the empirical tools to measure and analyze the rapid price movements. Yet, volatility at a high frequency often exhibits abrupt shifts driven by news and trading activity, making accurate estimation challenging. This study develops a change-point duration (CPD) model to estimate spot volatility, in which price-change intensities remain constant between events but may shift at random change points. Using simulations and empirical analysis of Nasdaq limit order book data, we demonstrate that the CPD model achieves a favorable balance between responsiveness to sudden shocks and stability in volatility dynamics. Moreover, it outperforms benchmark approaches, including the classical autoregressive conditional duration model, nonparametric duration-based estimators, and candlestick-based measures. These findings highlight the CPD framework as an effective tool for volatility estimation in high-frequency trading environments.

Suggested Citation

  • Zhicheng Li & Haipeng Xing & Yan Wang, 2025. "Spot Volatility Measurement Using a Change-Point Duration Model in the High-Frequency Market," IJFS, MDPI, vol. 13(4), pages 1-20, October.
  • Handle: RePEc:gam:jijfss:v:13:y:2025:i:4:p:186-:d:1764124
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7072/13/4/186/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7072/13/4/186/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. A. Ronald Gallant & Chien-Te Hsu & George Tauchen, 1999. "Using Daily Range Data To Calibrate Volatility Diffusions And Extract The Forward Integrated Variance," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 617-631, November.
    2. Glosten, Lawrence R. & Milgrom, Paul R., 1985. "Bid, ask and transaction prices in a specialist market with heterogeneously informed traders," Journal of Financial Economics, Elsevier, vol. 14(1), pages 71-100, March.
    3. Luc Bauwens & Pierre Giot, 2000. "The Logarithmic ACD Model: An Application to the Bid-Ask Quote Process of Three NYSE Stocks," Annals of Economics and Statistics, GENES, issue 60, pages 117-149.
    4. David Easley & Robert F. Engle & Maureen O'Hara & Liuren Wu, 2008. "Time-Varying Arrival Rates of Informed and Uninformed Trades," Journal of Financial Econometrics, Oxford University Press, vol. 6(2), pages 171-207, Spring.
    5. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
    6. repec:adr:anecst:y:2000:i:60:p:05 is not listed on IDEAS
    7. Seok Young Hong & Ingmar Nolte & Stephen J Taylor & Xiaolu Zhao, 2023. "Volatility Estimation and Forecasts Based on Price Durations," Journal of Financial Econometrics, Oxford University Press, vol. 21(1), pages 106-144.
    8. Anat R. Admati, Paul Pfleiderer, 1988. "A Theory of Intraday Patterns: Volume and Price Variability," The Review of Financial Studies, Society for Financial Studies, vol. 1(1), pages 3-40.
    9. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003. "Modeling and Forecasting Realized Volatility," Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
    10. Bollerslev, Tim & Li, Jia & Li, Qiyuan, 2024. "Optimal nonparametric range-based volatility estimation," Journal of Econometrics, Elsevier, vol. 238(1).
    11. repec:bla:jfinan:v:43:y:1988:i:2:p:451-66 is not listed on IDEAS
    12. Jia Li & Dishen Wang & Qiushi Zhang, 2024. "Reading the Candlesticks: An OK Estimator for Volatility," The Review of Economics and Statistics, MIT Press, vol. 106(4), pages 1114-1128, July.
    13. Easley, David & O'Hara, Maureen, 1992. "Time and the Process of Security Price Adjustment," Journal of Finance, American Finance Association, vol. 47(2), pages 576-605, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mazza, Paolo, 2015. "Price dynamics and market liquidity: An intraday event study on Euronext," The Quarterly Review of Economics and Finance, Elsevier, vol. 56(C), pages 139-153.
    2. repec:bla:jecsur:v:22:y:2008:i:4:p:711-751 is not listed on IDEAS
    3. Xiufeng Yan, 2021. "Autoregressive conditional duration modelling of high frequency data," Papers 2111.02300, arXiv.org.
    4. N. Taylor & Y. Xu, 2017. "The logarithmic vector multiplicative error model: an application to high frequency NYSE stock data," Quantitative Finance, Taylor & Francis Journals, vol. 17(7), pages 1021-1035, July.
    5. repec:uts:finphd:39 is not listed on IDEAS
    6. Barth, Andreas & Mansouri, Sasan & Wöbbeking, Carl Fabian, 2025. "Information flow and market efficiency: The economic impact of precise language," IWH Discussion Papers 13/2025, Halle Institute for Economic Research (IWH).
    7. Dionne, Georges & Duchesne, Pierre & Pacurar, Maria, 2009. "Intraday Value at Risk (IVaR) using tick-by-tick data with application to the Toronto Stock Exchange," Journal of Empirical Finance, Elsevier, vol. 16(5), pages 777-792, December.
    8. Manganelli, Simone, 2005. "Duration, volume and volatility impact of trades," Journal of Financial Markets, Elsevier, vol. 8(4), pages 377-399, November.
    9. Lo, Ingrid & Sapp, Stephen G., 2008. "The submission of limit orders or market orders: The role of timing and information in the Reuters D2000-2 system," Journal of International Money and Finance, Elsevier, vol. 27(7), pages 1056-1073, November.
    10. Ingrid Lo & Stephen Sapp, 2005. "Order Submission: The Choice between Limit and Market Orders," Staff Working Papers 05-42, Bank of Canada.
    11. Chen, Tao & Li, Jie & Cai, Jun, 2008. "Information content of inter-trade time on the Chinese market," Emerging Markets Review, Elsevier, vol. 9(3), pages 174-193, September.
    12. repec:uts:finphd:38 is not listed on IDEAS
    13. Chan, Choon Chat & Fong, Wai Mun, 2006. "Realized volatility and transactions," Journal of Banking & Finance, Elsevier, vol. 30(7), pages 2063-2085, July.
    14. Bardong, Florian & Bartram, Söhnke M. & Yadav, Pradeep K., 2005. "Informed Trading, Information Asymmetry and Pricing of Information Risk: Empirical Evidence from the NYSE," MPRA Paper 13586, University Library of Munich, Germany, revised 10 Oct 2008.
    15. Hautsch, Nikolaus, 2008. "Capturing common components in high-frequency financial time series: A multivariate stochastic multiplicative error model," Journal of Economic Dynamics and Control, Elsevier, vol. 32(12), pages 3978-4015, December.
    16. Hansen, Peter R. & Lunde, Asger, 2006. "Realized Variance and Market Microstructure Noise," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 127-161, April.
    17. Magdalena Osinska & Andrzej Dobrzynski & Yochanan Shachmurove, 2016. "Performance Of American And Russian Joint Stock Companies On Financial Market. A Microstructure Perspective," Equilibrium. Quarterly Journal of Economics and Economic Policy, Institute of Economic Research, vol. 11(4), pages 819-851, December.
    18. Fei Su, 2018. "Essays on Price Discovery and Volatility Dynamics in the Foreign Exchange Market," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 2-2018, January-A.
    19. Craig H. Furfine, 2003. "When is inter-transaction time informative?," Working Paper Series WP-03-04, Federal Reserve Bank of Chicago.
    20. Nowak, Sylwia & Anderson, Heather M., 2014. "How does public information affect the frequency of trading in airline stocks?," Journal of Banking & Finance, Elsevier, vol. 44(C), pages 26-38.
    21. Richard K. Lyons, 1996. "Foreign Exchange Volume: Sound and Fury Signifying Nothing?," NBER Chapters, in: The Microstructure of Foreign Exchange Markets, pages 183-208, National Bureau of Economic Research, Inc.
    22. Gerhard, Frank & Hess, Dieter & Pohlmeier, Winfried, 1998. "What a Difference a Day Makes: On the Common Market Microstructure of Trading Days," CoFE Discussion Papers 98/01, University of Konstanz, Center of Finance and Econometrics (CoFE).
    23. Vladimir Tsenkov, 2009. "Financial Markets Modelling," Economic Thought journal, Bulgarian Academy of Sciences - Economic Research Institute, issue 5, pages 87-96.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijfss:v:13:y:2025:i:4:p:186-:d:1764124. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.