IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v5y2008i5p428-435d3768.html
   My bibliography  Save this article

Assessment of the Efficacy of Chelate-Assisted Phytoextraction of Lead by Coffeeweed ( Sesbania exaltata Raf.)

Author

Listed:
  • Gloria Miller

    (Plant Physiology/Microbiology Laboratory, Department of Biology, P.O. Box 18540, College of Science, Engineering and Technology, Jackson State University, 1000 Lynch Street, Jackson, Mississippi 39217, USA)

  • Gregorio Begonia

    (Plant Physiology/Microbiology Laboratory, Department of Biology, P.O. Box 18540, College of Science, Engineering and Technology, Jackson State University, 1000 Lynch Street, Jackson, Mississippi 39217, USA)

  • Maria Begonia

    (Plant Physiology/Microbiology Laboratory, Department of Biology, P.O. Box 18540, College of Science, Engineering and Technology, Jackson State University, 1000 Lynch Street, Jackson, Mississippi 39217, USA)

  • Jennifer Ntoni

    (Plant Physiology/Microbiology Laboratory, Department of Biology, P.O. Box 18540, College of Science, Engineering and Technology, Jackson State University, 1000 Lynch Street, Jackson, Mississippi 39217, USA)

  • Oscar Hundley

    (Plant Physiology/Microbiology Laboratory, Department of Biology, P.O. Box 18540, College of Science, Engineering and Technology, Jackson State University, 1000 Lynch Street, Jackson, Mississippi 39217, USA)

Abstract

Lead (Pb), depending upon the reactant surface, pH, redox potential and other factors can bind tightly to the soil with a retention time of many centuries. Soil-metal interactions by sorption, precipitation and complexation processes, and differences between plant species in metal uptake efficiency, transport, and susceptibility make a general prediction of soil metal bioavailability and risks of plant metal toxicity difficult. Moreover, the tight binding characteristic of Pb to soils and plant materials make a significant portion of Pb unavailable for uptake by plants. This experiment was conducted to determine whether the addition of ethylenediaminetetraacetic acid (EDTA), ethylene glycol tetraacetic acid (EGTA), or acetic acid (HAc) can enhance the phytoextraction of Pb by making the Pb soluble and more bioavailable for uptake by coffeeweed ( Sesbania exaltata Raf.). Also we wanted to assess the efficacy of chelates in facilitating translocation of the metal into the above-ground biomass of this plant. To test the effect of chelates on Pb solubility, 2 g of Pb-spiked soil (1000 mg Pb/kg dry soil) were added to each 15 mL centrifuge tube. Chelates (EDTA, EGTA, HAc) in a 1:1 ratio with the metal, or distilled deionized water were then added. Samples were shaken on a platform shaker then centrifuged at the end of several time periods. Supernatants were filtered with a 0.45 μm filter and quantified by inductively coupled plasma-optical emission spectrometry (ICP-OES) to determine soluble Pb concentrations. Results revealed that EDTA was the most effective in bringing Pb into solution, and that maximum solubility was reached 6 days after chelate amendment. Additionally, a greenhouse experiment was conducted by planting Sesbania seeds in plastic tubes containing top soil and peat (2:1, v:v) spiked with various levels (0, 1000, 2000 mg Pb/kg dry soil) of lead nitrate. At six weeks after emergence, aqueous solutions of EDTA and/or HAc (in a 1:1 ratio with the metal) or distilled deionized water were applied to the root zones. Plants were harvested at 6 days after chelate addition to coincide with the duration of maximum metal solubility previously determined in this study. Results of the greenhouse experiment showed that coffeeweed was relatively tolerant to moderate levels of Pb and chelates as shown by very slight reductions in root and no discernable effects on shoot biomass. Root Pb concentrations increased with increasing levels of soil-applied Pb. Further increases in root Pb concentrations were attributed to chelate amendments. In the absence of chelates, translocation of Pb from roots to shoots was minimal. However, translocation dramatically increased in treatments with EDTA alone or in combination with HAc. Overall, the results of this study indicated that depending on the nature and type of Pb-contaminated soil being remediated, the bioavailability and uptake of Pb by coffeeweed can be enhanced by amending the soil with chelates especially after the plants have reached maximum biomass.

Suggested Citation

  • Gloria Miller & Gregorio Begonia & Maria Begonia & Jennifer Ntoni & Oscar Hundley, 2008. "Assessment of the Efficacy of Chelate-Assisted Phytoextraction of Lead by Coffeeweed ( Sesbania exaltata Raf.)," IJERPH, MDPI, vol. 5(5), pages 1-8, December.
  • Handle: RePEc:gam:jijerp:v:5:y:2008:i:5:p:428-435:d:3768
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/5/5/428/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/5/5/428/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gloria Miller & Gregorio Begonia & Maria Begonia & Jennifer Ntoni, 2008. "Bioavailability and Uptake of Lead by Coffeeweed ( Sesbania exaltata Raf.)," IJERPH, MDPI, vol. 5(5), pages 1-5, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:5:y:2008:i:5:p:428-435:d:3768. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.