Author
Listed:
- Wellington K. Ayensu
(Cellomics and Toxicogenomics Research Laboratory, NIH-Center for Environmental Health, College of Science, Engineering, and Technology, Jackson State University, 1400 Lynch Street, Box 18540, Jackson, Mississippi 39217, USA)
- Paul B. Tchounwou
(Cellomics and Toxicogenomics Research Laboratory, NIH-Center for Environmental Health, College of Science, Engineering, and Technology, Jackson State University, 1400 Lynch Street, Box 18540, Jackson, Mississippi 39217, USA)
- Robert W. McMurray
(Rheumatology Section, G.V. (Sonny) Montgomery V.A. Hospital, and Division of Rheumatology and Molecular Immunology, Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi 39216, USA)
Abstract
Evidence points to increases in the incidence and prevalence of several autoimmune diseases in the United States. As a result, the cost to public health from clinical management of autoimmune conditions is on the rise. The initiation and progression of autoimmune disturbances involves both genetic and environmental factors. Deficiencies in important proteins that normally participate in maintaining checks and balances within the internal milieu may render an individual prone to developing autoantibodies. Structural abnormalities or decline in normal levels of the pentraxins (serum amylase-P protein, the acute phase proteins, complement, and C-reactive proteins) have been shown to induce autoimmunity. Irregular transmission of information arising from multiple signal transduction pathways typically associated with the serine/threonine cascade routes of mitogen activating phosphorylation kinases, has also been found to induce autoimmunity. The kind of ligand/receptor interactions drives physical recruitment of different signals within the lymphocyte; these links define the quality and quantity of subsequent immune responses. CD95 or the Fas/Apo-1 and its ligand CD95L participate in regulating lymphocyte populations and therefore influence various aspects of immune responses. Mutational abnormalities resulting from synthesis of proteins by the CD95 and/or its ligand CD95L may result in alterations in the apoptotic pathways. Apoptosis may be completely inhibited, activated or partially stimulated. Modulation of apoptosis may lead to accumulation of self-antigens. Subsequently the immune system may be stimulated to react against self-molecules through lymphatic hyperplasia. This process may end up in proliferative disorders and enhanced susceptibility to autoimmune syndromes. This paper deals with mechanisms of autoimmunopathogenesis at the cellular and molecular levels. Emphasis is laid on the role of T and B cell receptor/ligand interactions, functions and malfunctions due to structural and quantitative alterations in T- B- cell cluster of antigen determinants. Genetically susceptible patients who develop spontaneous autoimmune diseases are examined and the etiological factors implicated in the initiation and subsequent dissemination of autoimmune diseases is discussed.
Suggested Citation
Wellington K. Ayensu & Paul B. Tchounwou & Robert W. McMurray, 2004.
"Molecular and Cellular Mechanisms Associated with Autoimmune Diseases,"
IJERPH, MDPI, vol. 1(1), pages 1-35, February.
Handle:
RePEc:gam:jijerp:v:1:y:2004:i:1:p:39-73:d:2788
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:1:y:2004:i:1:p:39-73:d:2788. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.