IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i24p13271-d703895.html
   My bibliography  Save this article

Transfer of Macronutrients, Micronutrients, and Toxic Elements from Soil to Grapes to White Wines in Uncontaminated Vineyards

Author

Listed:
  • Justin B. Richardson

    (Department of Geosciences, University of Massachusetts Amherst, Amherst, MA 01003, USA)

  • Jahziel K. Chase

    (Department of Geosciences, University of Massachusetts Amherst, Amherst, MA 01003, USA)

Abstract

Wine is a popular beverage and may be a source of nutrient and toxic elements during human consumption. Here, we explored the variation in nutrient and toxic elements from soils to grape berries and commercial white wines (Chardonnay) at five USA vineyards (New York, Vermont, California, Virginia) with strongly contrasting geology, soils, and climates. Samples were analyzed for macronutrients (Ca, K, and Mg), micronutrients (Mn, Cu, and Zn), and toxic elements (As, Cd, and Pb). Our study showed contrasting macronutrient, micronutrient, and toxic element concentrations in soils and in vines, leaves, and grapes. However, plant tissue concentrations did not correspond with total soil concentrations, suggesting a disconnect governing their accumulation. Bioconcentration factors for soil to grape berry transfer suggest the accumulation of Ca, K and Mg in berries while Fe, Mn, Cu, Zn, and Pb were generally not accumulated in our study or in previous studies. Wines from the five vineyards studied had comparable nutrient, micronutrient, and toxic metal concentrations as wines from Germany, Italy, Portugal, Spain, Croatia, Czech Republic, and Japan. The transfer of nutrients and toxic elements from grape berries to wine indicated that only Ca, K, and Mg were added or retained while concentrations of all other micronutrients and toxic elements were somewhat to extensively diminished. Thus, there appears to be a substantial effect on the geochemistry of the wine from the grape from either the fermentation process (i.e., flocculation), or a dilution effect. We conclude that soils, geology, and climate do not appear to generate a unique geochemical terroir as the transfer and concentration of inorganic nutrients appear to be comparable across strongly contrasting vineyards. This has several implications for human health. Nutrients in wine have potential impacts for human nutrition, as wine can meet or exceed the recommended dietary requirements of Ca, K, Mg, and Fe, and toxic metals As and Pb concentrations were also non-trivial.

Suggested Citation

  • Justin B. Richardson & Jahziel K. Chase, 2021. "Transfer of Macronutrients, Micronutrients, and Toxic Elements from Soil to Grapes to White Wines in Uncontaminated Vineyards," IJERPH, MDPI, vol. 18(24), pages 1-17, December.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:24:p:13271-:d:703895
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/24/13271/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/24/13271/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:24:p:13271-:d:703895. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.