IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i12p6581-d577548.html
   My bibliography  Save this article

Removal of Heavy Metal Ions from Wastewater Using Hydroxyethyl Methacrylate-Modified Cellulose Nanofibers: Kinetic, Equilibrium, and Thermodynamic Analysis

Author

Listed:
  • Mohamed Gouda

    (Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia)

  • Abdullah Aljaafari

    (Department of Physics, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia)

Abstract

The objective of this work was to fabricate modified cellulose nanofibers (CNFs) for the removal of heavy metal ions (Cd 2+ and Pb 2+ ) from wastewater. Cellulose was modified with 2-hydroxyethyl methacrylate (HEMA) via grafting copolymerization using the microwave-assisted technique in the presence of ceric ammonium nitrate (CAN) as an initiator. Prepared cellulose-graft-(2-hydroxyethyl methacrylate) (HEMA/C) copolymers were characterized using Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). Different factors affecting the graft yield, such as irradiation time, monomer concentrations, and initiator concentrations, were investigated. Furthermore, cellulose-graft-(2-hydroxyethyl methacrylate) copolymer nanofibers (HEMA/CNF) were fabricated by electrospinning using N , N -dimethylacetamide-LiCl as a solvent. Electrospun nanofiber copolymers were characterized using SEM and thermogravimetric analysis (TGA). Operating parameters, including time, starting metal concentrations, and adsorbent concentration, were analyzed at a pH of 5.6 for the two metal ions. The best-fit model of adsorption energy was the pseudo-second-order model, and adsorption isotherms at equilibrium were well described by the Langmuir and Freundlich models. The negative values of ΔG and positive values of ΔH and ΔS suggest that the adsorption of Cd 2+ and Pb 2+ ions onto electrospun HEMA/CNF is a spontaneous, endothermic, and favorable reaction.

Suggested Citation

  • Mohamed Gouda & Abdullah Aljaafari, 2021. "Removal of Heavy Metal Ions from Wastewater Using Hydroxyethyl Methacrylate-Modified Cellulose Nanofibers: Kinetic, Equilibrium, and Thermodynamic Analysis," IJERPH, MDPI, vol. 18(12), pages 1-16, June.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:12:p:6581-:d:577548
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/12/6581/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/12/6581/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:12:p:6581-:d:577548. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.