IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i18p6820-d415664.html
   My bibliography  Save this article

Recent Advances in Occupational Exposure Assessment of Aerosols

Author

Listed:
  • Martin Harper

    (Zefon International, Inc., 5350 SW 1st Lane, Ocala, FL 34474, USA
    Department of Environmental Engineering Sciences, University of Florida, Black Hall, Gainesville, FL 32603, USA)

Abstract

Exposure science is underpinned by characterization (measurement) of exposures. In this article, six recent advances in exposure characterization by sampling and analysis are reviewed as tools in the occupational exposure assessment of aerosols. Three advances discussed in detail are (1) recognition and inclusion of sampler wall deposits; (2) development of a new sampling and analytical procedure for respirable crystalline silica that allows non-destructive field analysis at the end of the sampling period; and (3) development of a new sampler to collect the portion of sub-300 nm aerodynamic diameter particles that would deposit in human airways. Three additional developments are described briefly: (4) a size-selective aerosol sampler that allows the collection of multiple physiologically-relevant size fractions; (5) a miniaturized pump and versatile sampling head to meet multiple size-selective sampling criteria; and (6) a novel method of sampling bioaerosols including viruses while maintaining viability. These recent developments are placed in the context of the historical evolution in sampling and analytical developments from 1900 to the present day. While these are not the only advances in exposure characterization, or exposure assessment techniques, they provide an illustration of how technological advances are adding more tools to our toolkit. The review concludes with a number of recommended areas for future research, including expansion of real-time and end-of-shift on-site measurement, development of samplers that operate at higher flow-rates to ensure measurement at lowered limit values, and development of procedures that accurately distinguish aerosol and vapor phases of semi-volatile substances.

Suggested Citation

  • Martin Harper, 2020. "Recent Advances in Occupational Exposure Assessment of Aerosols," IJERPH, MDPI, vol. 17(18), pages 1-18, September.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:18:p:6820-:d:415664
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/18/6820/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/18/6820/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:18:p:6820-:d:415664. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.