IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i13p4841-d380584.html
   My bibliography  Save this article

Risk Assessment and Source Apportionment of Soil Heavy Metals under Different Land Use in a Typical Estuary Alluvial Island

Author

Listed:
  • Ting Sun

    (Department of Environment Science and Engineering, Fudan University, Shanghai 200433, China)

  • Jingling Huang

    (Department of Environment Science and Engineering, Fudan University, Shanghai 200433, China)

  • Yuying Wu

    (Department of Environment Science and Engineering, Fudan University, Shanghai 200433, China)

  • Yuan Yuan

    (Department of Environment Science and Engineering, Fudan University, Shanghai 200433, China)

  • Yujing Xie

    (Department of Environment Science and Engineering, Fudan University, Shanghai 200433, China)

  • Zhengqiu Fan

    (Department of Environment Science and Engineering, Fudan University, Shanghai 200433, China)

  • Zhijian Zheng

    (Department of Environment Science and Engineering, Fudan University, Shanghai 200433, China)

Abstract

Understanding the environmental risks of soil heavy metals (HMs) and identifying their main sources are the essential prerequisites for the prevention and management of soil pollution. Based on a detailed survey of soil HMs (Cu, Cr, Ni, Zn, Pb, Cd, As and Hg) from different land use types (including agricultural land, construction land, wetland, and forest land) in an estuary alluvial island, the environmental risk and source apportionment of soil HMs were investigated. Altogether, 117 soil samples were taken in the study area to appraise the soil HMs environmental risk by using the geo-accumulation index (Igeo), potential ecological risk index (RI), and human health risk assessment (HRA) and to identify its main sources by using positive matrix factorization (PMF) model. The average concentrations of soil HMs (except As) surpassed their reference background values in China. There were no significant differenced in the mean concentrations of HMs in different land use types, except that the Hg concentration in the construction land was significantly higher than that in others. The results of Igeo showed that Cd pollution was unpolluted to moderately polluted, and that the others were unpolluted. The potential ecological risk level for Cd and Hg was “moderated potential risk”, while for Cu, Cr, Ni, Zn, Pb and As was “low potential risk”. Higher contamination was distributed at the west-central area. The results of the HRA indicated that the non-carcinogenic risk and the carcinogenic risk that human beings suffered from HMs in different land uses were insignificant. To more accurately identify the sources of soil HMs, the PMF model coupled with the GIS-spatial analysis was applied. The results showed that agricultural activities, natural source, industrial discharge and river transportation, and atmosphere deposition were the main determining factors for the accumulation of soil HMs in the study area, with the contribution rate of 24.25%, 23.79%, 23.84%, and 28.12%, respectively. The study provides an underlying insight needed to control of the soil HM pollutions for an estuary alluvial island.

Suggested Citation

  • Ting Sun & Jingling Huang & Yuying Wu & Yuan Yuan & Yujing Xie & Zhengqiu Fan & Zhijian Zheng, 2020. "Risk Assessment and Source Apportionment of Soil Heavy Metals under Different Land Use in a Typical Estuary Alluvial Island," IJERPH, MDPI, vol. 17(13), pages 1-20, July.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:13:p:4841-:d:380584
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/13/4841/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/13/4841/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. ZHENG,Huanqiang & ZHANG,Zaiwang & ZHANG,Chenxi, 2018. "Spatial Distribution Characteristics of Heavy Metals Cu and Zn in Coastal Wetland Sediments," Asian Agricultural Research, USA-China Science and Culture Media Corporation, vol. 10(01), January.
    2. Dongyue Li & Yilan Liao, 2018. "Spatial Characteristics of Heavy Metals in Street Dust of Coal Railway Transportation Hubs: A Case Study in Yuanping, China," IJERPH, MDPI, vol. 15(12), pages 1-21, November.
    3. Tao, Yu & Wang, Hongning & Ou, Weixin & Guo, Jie, 2018. "A land-cover-based approach to assessing ecosystem services supply and demand dynamics in the rapidly urbanizing Yangtze River Delta region," Land Use Policy, Elsevier, vol. 72(C), pages 250-258.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhihong Wang & Yingle Chen & Song Wang & Yujuan Yu & Wenyan Huang & Qiaolin Xu & Lei Zeng, 2022. "Pollution Risk Assessment and Sources Analysis of Heavy Metal in Soil from Bamboo Shoots," IJERPH, MDPI, vol. 19(22), pages 1-19, November.
    2. Wenbing Luo & Zhongping Deng & Shihu Zhong & Mingjun Deng, 2022. "Trends, Issues and Future Directions of Urban Health Impact Assessment Research: A Systematic Review and Bibliometric Analysis," IJERPH, MDPI, vol. 19(10), pages 1-23, May.
    3. Halidan Asaiduli & Abdugheni Abliz & Abudukeyimu Abulizi & Xiaoli Sun & Panqing Ye, 2023. "Assessment of Soil Heavy Metal Pollution and Health Risks in Different Functional Areas on the Northern Slope of the Eastern Tianshan Mountains in Xinjiang, NW China," IJERPH, MDPI, vol. 20(6), pages 1-18, March.
    4. Xiaoqian Li & Yaning Tang & Xinghua Wang & Xiaodong Song & Jiaxue Yang, 2023. "Heavy Metals in Soil around a Typical Antimony Mine Area of China: Pollution Characteristics, Land Cover Influence and Source Identification," IJERPH, MDPI, vol. 20(3), pages 1-14, January.
    5. Liang Xiao & Yong Zhou & He Huang & Yu-Jie Liu & Ke Li & Meng-Yao Li & Yang Tian & Fei Wu, 2020. "Application of Geostatistical Analysis and Random Forest for Source Analysis and Human Health Risk Assessment of Potentially Toxic Elements (PTEs) in Arable Land Soil," IJERPH, MDPI, vol. 17(24), pages 1-19, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. González-García, Alberto & Palomo, Ignacio & González, José A. & López, César A. & Montes, Carlos, 2020. "Quantifying spatial supply-demand mismatches in ecosystem services provides insights for land-use planning," Land Use Policy, Elsevier, vol. 94(C).
    2. Wu, Ye & Tao, Yu & Yang, Guishan & Ou, Weixin & Pueppke, Steven & Sun, Xiao & Chen, Gongtai & Tao, Qin, 2019. "Impact of land use change on multiple ecosystem services in the rapidly urbanizing Kunshan City of China: Past trajectories and future projections," Land Use Policy, Elsevier, vol. 85(C), pages 419-427.
    3. Hattam, Caroline & Broszeit, Stefanie & Langmead, Olivia & Praptiwi, Radisti A. & Ching Lim, Voon & Creencia, Lota A. & Duc Hau, Tran & Maharja, Carya & Wulandari, Prawesti & Mitra Setia, Tatang & Sug, 2021. "A matrix approach to tropical marine ecosystem service assessments in South east Asia," Ecosystem Services, Elsevier, vol. 51(C).
    4. Bojie Wang & Haiping Tang & Qin Zhang & Fengqi Cui, 2020. "Exploring Connections among Ecosystem Services Supply, Demand and Human Well-Being in a Mountain-Basin System, China," IJERPH, MDPI, vol. 17(15), pages 1-15, July.
    5. Tian Dong & Weihua Xu & Hua Zheng & Yang Xiao & Lingqiao Kong & Zhiyun Ouyang, 2018. "A Framework for Regional Ecological Risk Warning Based on Ecosystem Service Approach: A Case Study in Ganzi, China," Sustainability, MDPI, vol. 10(8), pages 1-13, August.
    6. Shaofeng Yuan & Congmou Zhu & Lixia Yang & Fenghua Xie, 2019. "Responses of Ecosystem Services to Urbanization-Induced Land Use Changes in Ecologically Sensitive Suburban Areas in Hangzhou, China," IJERPH, MDPI, vol. 16(7), pages 1-14, March.
    7. Xinyu Ouyang & Xiangyu Luo, 2022. "Models for Assessing Urban Ecosystem Services: Status and Outlooks," Sustainability, MDPI, vol. 14(8), pages 1-20, April.
    8. You Zuo & Lin Zhang, 2023. "Research on Local Ecosystem Cultural Services in the Jiangnan Water Network Rural Areas: A Case Study of the Ecological Green Integration Demonstration Zone in the Yangtze River Delta, China," Land, MDPI, vol. 12(7), pages 1-21, July.
    9. Wenbo Cai & Wei Jiang & Hongyu Du & Ruishan Chen & Yongli Cai, 2021. "Assessing Ecosystem Services Supply-Demand (Mis)Matches for Differential City Management in the Yangtze River Delta Urban Agglomeration," IJERPH, MDPI, vol. 18(15), pages 1-22, July.
    10. Qianru Yu & Chen-Chieh Feng & NuanYin Xu & Luo Guo & Dan Wang, 2019. "Quantifying the Impact of Grain for Green Program on Ecosystem Service Management: A Case Study of Exibei Region, China," IJERPH, MDPI, vol. 16(13), pages 1-17, June.
    11. Luo, Xiangyu & Jiang, Peng & Yang, Jingyi & Jin, Jing & Yang, Jun, 2021. "Simulating PM2.5 removal in an urban ecosystem based on the social-ecological model framework," Ecosystem Services, Elsevier, vol. 47(C).
    12. Tao, Yu & Tao, Qin & Sun, Xiao & Qiu, Jiangxiao & Pueppke, Steven G. & Ou, Weixin & Guo, Jie & Qi, Jiaguo, 2022. "Mapping ecosystem service supply and demand dynamics under rapid urban expansion: A case study in the Yangtze River Delta of China," Ecosystem Services, Elsevier, vol. 56(C).
    13. Valencia Torres, Angélica & Tiwari, Chetan & Atkinson, Samuel F., 2021. "Progress in ecosystem services research: A guide for scholars and practitioners," Ecosystem Services, Elsevier, vol. 49(C).
    14. Min, Min & Miao, Changhong & Duan, Xuejun & Yan, Wei, 2022. "Formation mechanisms and general characteristics of cultivated land use patterns in the Chaohu Lake Basin, China," Land Use Policy, Elsevier, vol. 117(C).
    15. Qinqin Shi & Hai Chen & Di Liu & Tianwei Geng & Hang Zhang, 2022. "Identifying the Spatial Imbalance in the Supply and Demand of Cultural Ecosystem Services," IJERPH, MDPI, vol. 19(11), pages 1-20, May.
    16. Chen, Wanxu & Chi, Guangqing & Li, Jiangfeng, 2020. "The spatial aspect of ecosystem services balance and its determinants," Land Use Policy, Elsevier, vol. 90(C).
    17. Wenbo Cai & Chengji Shu & Yonggang Zhu, 2023. "Using Ecosystem Services to Inform Sustainable Waterfront Area Management: A Case Study in the Yangtze River Delta Ecological Green Integration Demonstration Zone," Land, MDPI, vol. 12(7), pages 1-18, July.
    18. Xiangyu Kong & Ting Liu & Ziheng Yu & Zhe Chen & Da Lei & Zhiwei Wang & Hua Zhang & Qiuhua Li & Shanshan Zhang, 2018. "Heavy Metal Bioaccumulation in Rice from a High Geological Background Area in Guizhou Province, China," IJERPH, MDPI, vol. 15(10), pages 1-14, October.
    19. Jin Sun & Liming Liu & Klaus Müller & Peter Zander & Guoping Ren & Guanyi Yin & Yingjie Hu, 2018. "Surplus or Deficit? Spatiotemporal Variations of the Supply, Demand, and Budget of Landscape Services and Landscape Multifunctionality in Suburban Shanghai, China," Sustainability, MDPI, vol. 10(10), pages 1-21, October.
    20. Jie Zheng & Guodong Chen & Tiantian Zhang & Mingjing Ding & Binglin Liu & Hao Wang, 2021. "Exploring Spatial Variations in the Relationships between Landscape Functions and Human Activities in Suburban Rural Communities: A Case Study in Jiangning District, China," IJERPH, MDPI, vol. 18(18), pages 1-19, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:13:p:4841-:d:380584. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.