IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v16y2019i17p3161-d262289.html
   My bibliography  Save this article

Fuzzy Comprehensive Evaluation Assistant 3D-QSAR of Environmentally Friendly FQs to Reduce ADRs

Author

Listed:
  • Zhixing Ren

    (College of Forestry, Northeast Forestry University, No. 26 Hexing Road, Harbin 150040, China)

  • Yingwei Wang

    (College of Forestry, Northeast Forestry University, No. 26 Hexing Road, Harbin 150040, China)

  • Haihong Xu

    (Appraisal Center for Environmental & Engineering Ministry of Ecology and Environment, No. 28 Beiyuan Road, Beijing 100012, China)

  • Yufei Li

    (College of Forestry, Northeast Forestry University, No. 26 Hexing Road, Harbin 150040, China)

  • Song Han

    (College of Forestry, Northeast Forestry University, No. 26 Hexing Road, Harbin 150040, China)

Abstract

Most studies on adverse drug reactions (ADRs) of fluoroquinolones (FQs) have focused on the mechanisms of single ADRs, and no quantitative structure–activity relationship (QSAR) method studies have been carried out that combine several ADRs of FQs. In this study, an improved three-dimensional (3D) QSAR method was established using fuzzy comprehensive evaluation. This method could simultaneously consider three common ADRs of FQs using molecular parameters. The improved method could comprehensively predict three ADRs of FQs and provide direction for the development of new drugs with lower ADRs than the originals. According to the improved method, 48 derivatives with lower ADRs (decreased by 4.86% to 50.92%) were designed from pazufloxacin. Three derivatives with a higher genotoxicity, higher photodegradation, and lower bioconcentration than pazufloxacin were selected using the constructed QSAR methods of the FQs. Finally, three traditional 3D-QSAR methods of single ADR were constructed to validate the improved method. The improved method was reasonable, with a relative error range of 0.96% to 4.30%. This study provides valuable reference data and will be useful for the development of strategies to produce new drugs with few ADRs. In the absence of complementary biological studies of these adverse drug reactions, the results reported here may be quite divergent from those found in humans or experimental animals in vivo. One major reason for this is that many adverse drug reactions are dependent upon enzyme-catalyzed metabolic activation (toxication) or on non-enzymatic conversion to toxic products and are not due to the parent drug moiety.

Suggested Citation

  • Zhixing Ren & Yingwei Wang & Haihong Xu & Yufei Li & Song Han, 2019. "Fuzzy Comprehensive Evaluation Assistant 3D-QSAR of Environmentally Friendly FQs to Reduce ADRs," IJERPH, MDPI, vol. 16(17), pages 1-20, August.
  • Handle: RePEc:gam:jijerp:v:16:y:2019:i:17:p:3161-:d:262289
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/16/17/3161/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/16/17/3161/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lu-ze Yang & Miao Liu, 2020. "A Double-Activity (Green Algae Toxicity and Bacterial Genotoxicity) 3D-QSAR Model Based on the Comprehensive Index Method and Its Application in Fluoroquinolones’ Modification," IJERPH, MDPI, vol. 17(3), pages 1-14, February.
    2. Xingyan Jin & Yuanyuan Zhao & Zhixing Ren & Panpan Wang & Yu Li, 2022. "Bio-Enhanced Degradation Strategies for Fluoroquinolones in the Sewage Sludge Composting Stage: Molecular Modification and Resistance Gene Regulation," IJERPH, MDPI, vol. 19(13), pages 1-19, June.
    3. Yuting Chen & Yuying Dong & Le Li & Jian Jiao & Sitong Liu & Xuejun Zou, 2022. "Toxicity Rank Order (TRO) As a New Approach for Toxicity Prediction by QSAR Models," IJERPH, MDPI, vol. 20(1), pages 1-10, December.
    4. Peixuan Sun & Yuanyuan Zhao & Luze Yang & Zhixing Ren & Wenjin Zhao, 2020. "Environmentally Friendly Quinolones Design for a Two-Way Choice between Biotoxicity and Genotoxicity through Double-Activity 3D-QSAR Model Coupled with the Variation Weighting Method," IJERPH, MDPI, vol. 17(24), pages 1-22, December.
    5. Yilin Hou & Yuanyuan Zhao & Yu Li, 2020. "Environmentally Friendly Fluoroquinolone Derivatives with Lower Plasma Protein Binding Rate Designed Using 3D-QSAR, Molecular Docking and Molecular Dynamics Simulation," IJERPH, MDPI, vol. 17(18), pages 1-18, September.
    6. Haigang Zhang & Chengji Zhao & Hui Na, 2020. "Enhanced Biodegradation of Phthalic Acid Esters’ Derivatives by Plasticizer-Degrading Bacteria ( Burkholderia cepacia , Archaeoglobus fulgidus , Pseudomonas aeruginosa ) Using a Correction 3D-QSAR Mod," IJERPH, MDPI, vol. 17(15), pages 1-17, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:16:y:2019:i:17:p:3161-:d:262289. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.