IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v16y2019i17p3122-d261496.html
   My bibliography  Save this article

Spatiotemporal Characteristics of Air Quality across Weifang from 2014–2018

Author

Listed:
  • Chengming Li

    (Chinese Academy of Surveying and Mapping, Beijing 100830, China)

  • Zhaoxin Dai

    (Chinese Academy of Surveying and Mapping, Beijing 100830, China)

  • Lina Yang

    (Chinese Academy of Surveying and Mapping, Beijing 100830, China)

  • Zhaoting Ma

    (Chinese Academy of Surveying and Mapping, Beijing 100830, China)

Abstract

Air pollution has become a severe threat and challenge in China. Focusing on air quality in a heavily polluted city (Weifang Cty), this study aims to investigate spatial and temporal distribution characteristics of air pollution and identify the influence of weather factors on primary pollutants in Weifang over a long period from 2014–2018. The results indicate the annual Air quality Index (AQI) in Weifang has decreased since 2014 but is still far from the standard for excellent air quality. The primary pollutants are O 3 (Ozone), PM 10 (Particles with aerodynamic diameter ≤10 µm), and PM 2.5 (Particles with aerodynamic diameter ≤10 µm); the annual concentrations of PM 10 and PM 2.5 show a significant reduction but that of O 3 is basically unchanged. Seasonally, PM 10 and PM 2.5 show a U-shaped pattern, while O 3 exhibits inverted U-shaped variations, and different pollutants also present different characteristics daily. Spatially, O 3 exhibits a high level in the central region and a low level in the rural areas, while PM 10 and PM 2.5 are high in the northwest and low in the southeast. Additionally, the concentration of pollutants is greatly affected by meteorological factors, with PM 2.5 being negatively correlated with temperature and wind speed, while O 3 is positively correlated with the temperature. This research investigated the spatiotemporal characteristics of the air pollution and provided important policy advice based on the findings, which can be used to mitigate air pollution.

Suggested Citation

  • Chengming Li & Zhaoxin Dai & Lina Yang & Zhaoting Ma, 2019. "Spatiotemporal Characteristics of Air Quality across Weifang from 2014–2018," IJERPH, MDPI, vol. 16(17), pages 1-15, August.
  • Handle: RePEc:gam:jijerp:v:16:y:2019:i:17:p:3122-:d:261496
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/16/17/3122/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/16/17/3122/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yazhu Wang & Xuejun Duan & Lei Wang, 2019. "Spatial-Temporal Evolution of PM 2.5 Concentration and its Socioeconomic Influence Factors in Chinese Cities in 2014–2017," IJERPH, MDPI, vol. 16(6), pages 1-18, March.
    2. Tao Chen & Jun He & Xiaowei Lu & Jiangfeng She & Zhongqing Guan, 2016. "Spatial and Temporal Variations of PM 2.5 and Its Relation to Meteorological Factors in the Urban Area of Nanjing, China," IJERPH, MDPI, vol. 13(9), pages 1-16, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mao Mao & Haofei Sun & Xiaolin Zhang, 2020. "Air Pollution Characteristics and Health Risks in the Yangtze River Economic Belt, China during Winter," IJERPH, MDPI, vol. 17(24), pages 1-17, December.
    2. Lining Zhu & Yu Zhang & Zheng Wu & Chengcheng Zhang, 2021. "Spatio-Temporal Characteristics of SO 2 across Weifang from 2008 to 2020," IJERPH, MDPI, vol. 18(22), pages 1-17, November.
    3. Chengming Li & Kuo Zhang & Zhaoxin Dai & Zhaoting Ma & Xiaoli Liu, 2020. "Investigation of the Impact of Land-Use Distribution on PM 2.5 in Weifang: Seasonal Variations," IJERPH, MDPI, vol. 17(14), pages 1-20, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei Xue & Qingming Zhan & Qi Zhang & Zhonghua Wu, 2019. "Spatiotemporal Variations of Particulate and Gaseous Pollutants and Their Relations to Meteorological Parameters: The Case of Xiangyang, China," IJERPH, MDPI, vol. 17(1), pages 1-23, December.
    2. Lingyan Xu & Dandan Wang & Jianguo Du, 2022. "Spatial-Temporal Evolution and Influencing Factors of Urban Green and Smart Development Level in China: Evidence from 232 Prefecture-Level Cities," IJERPH, MDPI, vol. 19(7), pages 1-19, March.
    3. Wenhao Chen & Chang Zeng & Chuheng Ding & Yingfang Zhu & Yurong Sun, 2022. "Study on Spatio-Temporal Evolution Law and Driving Mechanism of PM 2.5 Concentration in Changsha–Zhuzhou–Xiangtan Urban Agglomeration," Sustainability, MDPI, vol. 14(22), pages 1-18, November.
    4. Jingyuan Li & Jinhua Cheng & Yang Wen & Jingyu Cheng & Zhong Ma & Peiqi Hu & Shurui Jiang, 2022. "The Cause of China’s Haze Pollution: City Level Evidence Based on the Extended STIRPAT Model," IJERPH, MDPI, vol. 19(8), pages 1-18, April.
    5. Xiangxue Zhang & Yue Lin & Changxiu Cheng & Junming Li, 2021. "Determinant Powers of Socioeconomic Factors and Their Interactive Impacts on Particulate Matter Pollution in North China," IJERPH, MDPI, vol. 18(12), pages 1-15, June.
    6. Haiou Yang & Wenbo Chen & Zhaofeng Liang, 2017. "Impact of Land Use on PM 2.5 Pollution in a Representative City of Middle China," IJERPH, MDPI, vol. 14(5), pages 1-14, April.
    7. Huilin Yang & Rui Yao & Peng Sun & Chenhao Ge & Zice Ma & Yaojin Bian & Ruilin Liu, 2023. "Spatiotemporal Evolution and Driving Forces of PM 2.5 in Urban Agglomerations in China," IJERPH, MDPI, vol. 20(3), pages 1-15, January.
    8. Lining Zhu & Yu Zhang & Zheng Wu & Chengcheng Zhang, 2021. "Spatio-Temporal Characteristics of SO 2 across Weifang from 2008 to 2020," IJERPH, MDPI, vol. 18(22), pages 1-17, November.
    9. Lilin Xiong & Jie Li & Ting Xia & Xinyue Hu & Yan Wang & Maonan Sun & Meng Tang, 2018. "Risk Reduction Behaviors Regarding PM 2.5 Exposure among Outdoor Exercisers in the Nanjing Metropolitan Area, China," IJERPH, MDPI, vol. 15(8), pages 1-13, August.
    10. Mengjie Wang & Yanjun Wang & Fei Teng & Shaochun Li & Yunhao Lin & Hengfan Cai, 2022. "Estimation and Analysis of PM 2.5 Concentrations with NPP-VIIRS Nighttime Light Images: A Case Study in the Chang-Zhu-Tan Urban Agglomeration of China," IJERPH, MDPI, vol. 19(7), pages 1-18, April.
    11. Huaxue Zhao & Yu Cheng & Ruijing Zheng, 2022. "Impact of the Digital Economy on PM 2.5 : Experience from the Middle and Lower Reaches of the Yellow River Basin," IJERPH, MDPI, vol. 19(24), pages 1-20, December.
    12. Xiangxue Zhang & Changxiu Cheng, 2022. "Temporal and Spatial Heterogeneity of PM 2.5 Related to Meteorological and Socioeconomic Factors across China during 2000–2018," IJERPH, MDPI, vol. 19(2), pages 1-15, January.
    13. Chunshan Zhou & Rongrong Zhang & Xiaoju Ning & Zhicheng Zheng, 2020. "Spatial-Temporal Characteristics in Grain Production and Its Influencing Factors in the Huang-Huai-Hai Plain from 1995 to 2018," IJERPH, MDPI, vol. 17(24), pages 1-19, December.
    14. Jun Li & Yu Chen & Fang Chen, 2024. "Analysis of the Factors Influencing the Spatial Distribution of PM2.5 Concentrations (SDG 11.6.2) at the Provincial Scale in China," Sustainability, MDPI, vol. 16(8), pages 1-18, April.
    15. Tianjun Lu & Yisi Liu & Armando Garcia & Meng Wang & Yang Li & German Bravo-villasenor & Kimberly Campos & Jia Xu & Bin Han, 2022. "Leveraging Citizen Science and Low-Cost Sensors to Characterize Air Pollution Exposure of Disadvantaged Communities in Southern California," IJERPH, MDPI, vol. 19(14), pages 1-16, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:16:y:2019:i:17:p:3122-:d:261496. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.