IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v16y2019i11p1973-d236981.html
   My bibliography  Save this article

Adsorption Performance of Activated-Carbon-Loaded Nonwoven Filters Used in Filtering Facepiece Respirators

Author

Listed:
  • Małgorzata Okrasa

    (Department of Personal Protective Equipment, Central Institute for Labour Protection, National Research Institute, Wierzbowa 48, 90-133 Łódź, Poland)

  • Jörn Hitz

    (Sub-Division 3.3 “Personal protective equipment against Chemical and Biological Substances”, Institute for Occupational Safety and Health of German Social Accident Insurance (IFA), Alte Heerstraße 111, 53757 Sankt Augustin, Germany)

  • Aleksandra Nowak

    (Department of Personal Protective Equipment, Central Institute for Labour Protection, National Research Institute, Wierzbowa 48, 90-133 Łódź, Poland)

  • Agnieszka Brochocka

    (Department of Personal Protective Equipment, Central Institute for Labour Protection, National Research Institute, Wierzbowa 48, 90-133 Łódź, Poland)

  • Christoph Thelen

    (Sub-Division 3.3 “Personal protective equipment against Chemical and Biological Substances”, Institute for Occupational Safety and Health of German Social Accident Insurance (IFA), Alte Heerstraße 111, 53757 Sankt Augustin, Germany)

  • Zbigniew Walczak

    (Department of Theoretical Physics, University of Lodz, Pomorska 149/153, 90-236 Łódź, Poland)

Abstract

Filtering nonwovens loaded with activated carbon are among the most popular materials used in the construction of filtering facepiece respirators (FFRs) with anti-odour properties that can be used for respiratory protection at workplaces where the occupational exposure limits of harmful substances are not exceeded. Such FFRs, in addition to a polymer filter material of varying effectiveness, also contain a layer of activated-carbon-loaded nonwoven filter, which limits the quantity of chemical compounds entering the breathing zone. The aim of this work was to analyse the influence of challenge concentration (20–120 ppm), relative humidity (2–70%), flow rate (20–55 L/min), and flow pattern (steady-state and pulsating) on the breakthrough of polymer/carbon nonwovens. A commercial activated-carbon-loaded nonwoven filter was used in this study. Its morphology and textural parameters were determined using optical microscopy, image processing, and nitrogen adsorption/desorption measurements at 77 K. Breakthrough experiments were carried out using cyclohexane vapours to assess adsorption characteristics of polymer/carbon media. The results showed that the breakthrough times decreased with increasing challenge concentration (up to 30%), relative humidity (up to 73%), and flow rate (up to 72%). The pulsating flow pattern was found to be more favourable in terms of odour reduction efficiency (up to 30%). The results indicate that all of these factors should be considered during selection and performance assessment of respirators used for odour relief.

Suggested Citation

  • Małgorzata Okrasa & Jörn Hitz & Aleksandra Nowak & Agnieszka Brochocka & Christoph Thelen & Zbigniew Walczak, 2019. "Adsorption Performance of Activated-Carbon-Loaded Nonwoven Filters Used in Filtering Facepiece Respirators," IJERPH, MDPI, vol. 16(11), pages 1-16, June.
  • Handle: RePEc:gam:jijerp:v:16:y:2019:i:11:p:1973-:d:236981
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/16/11/1973/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/16/11/1973/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Katarzyna Majchrzycka & Małgorzata Okrasa & Justyna Skóra & Beata Gutarowska, 2016. "Evaluation of the Survivability of Microorganisms Deposited on Filtering Respiratory Protective Devices under Varying Conditions of Humidity," IJERPH, MDPI, vol. 13(1), pages 1-13, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jung Hee Jang & Gi Bo Han, 2020. "Effect of Surface Treatment by O 3 and Chemical Activation by Alkali Metal on the Performance of ACFs on Adsorption and Desorption of BTX Gases," IJERPH, MDPI, vol. 17(15), pages 1-12, July.
    2. Małgorzata Okrasa & Justyna Szulc & Agnieszka Brochocka & Beata Gutarowska, 2021. "Application of Olfactometry to Assess the Anti-Odor Properties of Filtering Facepiece Respirators Containing Activated Carbon Nonwovens," IJERPH, MDPI, vol. 18(15), pages 1-12, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carla Viegas & Bianca Gomes & Filipe Oliveira & Marta Dias & Renata Cervantes & Pedro Pena & Anita Quintal Gomes & Liliana Aranha Caetano & Elisabete Carolino & Ednilton Tavares de Andrade & Susana Vi, 2022. "Microbial Contamination in the Coffee Industry: An Occupational Menace besides a Food Safety Concern?," IJERPH, MDPI, vol. 19(20), pages 1-18, October.
    2. Cassandra L. Thiel & Pallavi Sreedhar & Genevieve S. Silva & Hannah C. Greene & Meenakshi Seetharaman & Meghan Durr & Timothy Roberts & Rajesh Vedanthan & Paul H. Lee & Gizely Andrade & Omar El-Shahaw, 2023. "Conservation Practices for Personal Protective Equipment: A Systematic Review with Focus on Lower-Income Countries," IJERPH, MDPI, vol. 20(3), pages 1-23, January.
    3. Katarzyna Majchrzycka & Małgorzata Okrasa & Justyna Szulc & Anita Jachowicz & Beata Gutarowska, 2019. "Survival of Microorganisms on Nonwovens Used for the Construction of Filtering Facepiece Respirators," IJERPH, MDPI, vol. 16(7), pages 1-11, March.
    4. Anita Jachowicz & Katarzyna Majchrzycka & Justyna Szulc & Małgorzata Okrasa & Beata Gutarowska, 2019. "Survival of Microorganisms on Filtering Respiratory Protective Devices Used at Agricultural Facilities," IJERPH, MDPI, vol. 16(16), pages 1-19, August.
    5. Justyna Szulc & Anna Otlewska & Małgorzata Okrasa & Katarzyna Majchrzycka & Michael Sulyok & Beata Gutarowska, 2017. "Microbiological Contamination at Workplaces in a Combined Heat and Power (CHP) Station Processing Plant Biomass," IJERPH, MDPI, vol. 14(1), pages 1-18, January.
    6. Katarzyna Majchrzycka & Małgorzata Okrasa & Anita Jachowicz & Justyna Szulc & Beata Gutarowska, 2018. "Microbial Growth on Dust-Loaded Filtering Materials Used for the Protection of Respiratory Tract as a Factor Affecting Filtration Efficiency," IJERPH, MDPI, vol. 15(9), pages 1-18, September.
    7. Sang Bin Jeong & Ki Joon Heo & Byung Uk Lee, 2019. "Antimicrobial Air Filters Using Natural Sea Salt Particles for Deactivating Airborne Bacterial Particles," IJERPH, MDPI, vol. 17(1), pages 1-10, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:16:y:2019:i:11:p:1973-:d:236981. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.