IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v15y2018i10p2093-d171757.html
   My bibliography  Save this article

Curcumin, Cardiometabolic Health and Dementia

Author

Listed:
  • Yoona Kim

    (Department of Food and Nutrition/Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea)

  • Peter Clifton

    (School of Pharmacy and Medical Sciences, University of South Australia, General Post Office Box 2471, Adelaide, SA 5001, Australia)

Abstract

Current research indicates curcumin [diferuloylmethane; a polyphenolic compound isolated from the rhizomes of the dietary spice turmeric ( Curcuma longa )] exerts a beneficial effect on health which may be partly attributable to its anti-oxidative and anti-inflammatory properties. The aim of this review is to examine potential mechanisms of the actions of curcumin in both animal and human studies. Curcumin modulates relevant molecular target pathways to improve glucose and lipid metabolism, suppress inflammation, stimulate antioxidant enzymes, facilitate insulin signalling and reduce gut permeability. Curcumin also inhibits Aβ and tau accumulation in animal models and enhances mitochondria and synaptic function. In conclusion, in high-dose animal studies and in vitro, curcumin exerts a potential beneficial effect on cardiometabolic disease. However, human studies are relatively unconvincing. More intervention studies should be conducted with the new curcumin formulation with improved oral bioavailability.

Suggested Citation

  • Yoona Kim & Peter Clifton, 2018. "Curcumin, Cardiometabolic Health and Dementia," IJERPH, MDPI, vol. 15(10), pages 1-34, September.
  • Handle: RePEc:gam:jijerp:v:15:y:2018:i:10:p:2093-:d:171757
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/15/10/2093/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/15/10/2093/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Joseph T. Rodgers & Carlos Lerin & Wilhelm Haas & Steven P. Gygi & Bruce M. Spiegelman & Pere Puigserver, 2005. "Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1," Nature, Nature, vol. 434(7029), pages 113-118, March.
    2. Xin Hu & Shengbing Li & Gangyi Yang & Hua Liu & Guenther Boden & Ling Li, 2014. "Efficacy and Safety of Aldose Reductase Inhibitor for the Treatment of Diabetic Cardiovascular Autonomic Neuropathy: Systematic Review and Meta-Analysis," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-11, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guanlan Hu & Catriona Ling & Lijun Chi & Mehakpreet K. Thind & Samuel Furse & Albert Koulman & Jonathan R. Swann & Dorothy Lee & Marjolein M. Calon & Celine Bourdon & Christian J. Versloot & Barbara M, 2022. "The role of the tryptophan-NAD + pathway in a mouse model of severe malnutrition induced liver dysfunction," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    2. Liang Yang & Junfeng Shen & Chunhua Liu & Zhonghua Kuang & Yong Tang & Zhengjiang Qian & Min Guan & Yongfeng Yang & Yang Zhan & Nan Li & Xiang Li, 2023. "Nicotine rebalances NAD+ homeostasis and improves aging-related symptoms in male mice by enhancing NAMPT activity," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    3. Simeon R. Mihaylov & Lydia M. Castelli & Ya-Hui Lin & Aytac Gül & Nikita Soni & Christopher Hastings & Helen R. Flynn & Oana Păun & Mark J. Dickman & Ambrosius P. Snijders & Robert Goldstone & Oliver, 2023. "The master energy homeostasis regulator PGC-1α exhibits an mRNA nuclear export function," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    4. Jae Woo Park & Eun Roh & Gil Myoung Kang & So Young Gil & Hyun Kyong Kim & Chan Hee Lee & Won Hee Jang & Se Eun Park & Sang Yun Moon & Seong Jun Kim & So Yeon Jeong & Chae Beom Park & Hyo Sun Lim & Yu, 2023. "Circulating blood eNAMPT drives the circadian rhythms in locomotor activity and energy expenditure," Nature Communications, Nature, vol. 14(1), pages 1-17, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:15:y:2018:i:10:p:2093-:d:171757. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.