IDEAS home Printed from https://ideas.repec.org/a/gam/jftint/v8y2016i4p53-d82634.html
   My bibliography  Save this article

A Novel Multi-Focus Image Fusion Method Based on Stochastic Coordinate Coding and Local Density Peaks Clustering

Author

Listed:
  • Zhiqin Zhu

    (State Key Laboratory of Power Transmission Equipment and System Security and New Technology, College of Automation, Chongqing University, Chongqing 400044, China)

  • Guanqiu Qi

    (School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ 85287, USA)

  • Yi Chai

    (State Key Laboratory of Power Transmission Equipment and System Security and New Technology, College of Automation, Chongqing University, Chongqing 400044, China)

  • Yinong Chen

    (School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ 85287, USA)

Abstract

The multi-focus image fusion method is used in image processing to generate all-focus images that have large depth of field (DOF) based on original multi-focus images. Different approaches have been used in the spatial and transform domain to fuse multi-focus images. As one of the most popular image processing methods, dictionary-learning-based spare representation achieves great performance in multi-focus image fusion. Most of the existing dictionary-learning-based multi-focus image fusion methods directly use the whole source images for dictionary learning. However, it incurs a high error rate and high computation cost in dictionary learning process by using the whole source images. This paper proposes a novel stochastic coordinate coding-based image fusion framework integrated with local density peaks. The proposed multi-focus image fusion method consists of three steps. First, source images are split into small image patches, then the split image patches are classified into a few groups by local density peaks clustering. Next, the grouped image patches are used for sub-dictionary learning by stochastic coordinate coding. The trained sub-dictionaries are combined into a dictionary for sparse representation. Finally, the simultaneous orthogonal matching pursuit (SOMP) algorithm is used to carry out sparse representation. After the three steps, the obtained sparse coefficients are fused following the max L1-norm rule. The fused coefficients are inversely transformed to an image by using the learned dictionary. The results and analyses of comparison experiments demonstrate that fused images of the proposed method have higher qualities than existing state-of-the-art methods.

Suggested Citation

  • Zhiqin Zhu & Guanqiu Qi & Yi Chai & Yinong Chen, 2016. "A Novel Multi-Focus Image Fusion Method Based on Stochastic Coordinate Coding and Local Density Peaks Clustering," Future Internet, MDPI, vol. 8(4), pages 1-18, November.
  • Handle: RePEc:gam:jftint:v:8:y:2016:i:4:p:53-:d:82634
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1999-5903/8/4/53/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1999-5903/8/4/53/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Unknown, 2005. "Forward," 2005 Conference: Slovenia in the EU - Challenges for Agriculture, Food Science and Rural Affairs, November 10-11, 2005, Moravske Toplice, Slovenia 183804, Slovenian Association of Agricultural Economists (DAES).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guanqiu Qi & Jinchuan Wang & Qiong Zhang & Fancheng Zeng & Zhiqin Zhu, 2017. "An Integrated Dictionary-Learning Entropy-Based Medical Image Fusion Framework," Future Internet, MDPI, vol. 9(4), pages 1-25, October.
    2. Lingjun Liu & Zhonghua Xie & Cui Yang, 2017. "A Novel Iterative Thresholding Algorithm Based on Plug-and-Play Priors for Compressive Sampling," Future Internet, MDPI, vol. 9(3), pages 1-10, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pilar Lopez-Llompart & G. Mathias Kondolf, 2016. "Encroachments in floodways of the Mississippi River and Tributaries Project," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 513-542, March.
    2. Michelle Sheran Sylvester, 2007. "The Career and Family Choices of Women: A Dynamic Analysis of Labor Force Participation, Schooling, Marriage and Fertility Decisions," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 10(3), pages 367-399, July.
    3. DAVID M. BLAU & WILBERT van der KLAAUW, 2013. "What Determines Family Structure?," Economic Inquiry, Western Economic Association International, vol. 51(1), pages 579-604, January.
    4. Afanasyev, Dmitriy O. & Fedorova, Elena A. & Popov, Viktor U., 2015. "Fine structure of the price–demand relationship in the electricity market: Multi-scale correlation analysis," Energy Economics, Elsevier, vol. 51(C), pages 215-226.
    5. Peter Viggo Jakobsen, 2009. "Small States, Big Influence: The Overlooked Nordic Influence on the Civilian ESDP," Journal of Common Market Studies, Wiley Blackwell, vol. 47(1), pages 81-102, January.
    6. Billio, Monica & Casarin, Roberto & Osuntuyi, Anthony, 2016. "Efficient Gibbs sampling for Markov switching GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 37-57.
    7. Jan Babecký & Fabrizio Coricelli & Roman Horváth, 2009. "Assessing Inflation Persistence: Micro Evidence on an Inflation Targeting Economy," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 59(2), pages 102-127, June.
    8. Lloyd, S. P., 2017. "Unconventional Monetary Policy and the Interest Rate Channel: Signalling and Portfolio Rebalancing," Cambridge Working Papers in Economics 1735, Faculty of Economics, University of Cambridge.
    9. Ichiro Fukunaga, 2007. "Imperfect Common Knowledge, Staggered Price Setting, and the Effects of Monetary Policy," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(7), pages 1711-1739, October.
    10. Albertazzi, Ugo & Gambacorta, Leonardo, 2009. "Bank profitability and the business cycle," Journal of Financial Stability, Elsevier, vol. 5(4), pages 393-409, December.
    11. Beck, Thorsten & Demirgüç-Kunt, Asli & Merrouche, Ouarda, 2013. "Islamic vs. conventional banking: Business model, efficiency and stability," Journal of Banking & Finance, Elsevier, vol. 37(2), pages 433-447.
    12. Jinho Bae & Chang-Jin Kim & Dong Kim, 2012. "The evolution of the monetary policy regimes in the U.S," Empirical Economics, Springer, vol. 43(2), pages 617-649, October.
    13. McMahon, Rob, 2020. "Co-developing digital inclusion policy and programming with indigenous partners: Interventions from Canada," Internet Policy Review: Journal on Internet Regulation, Alexander von Humboldt Institute for Internet and Society (HIIG), Berlin, vol. 9(2), pages 1-26.
    14. George W. Evans & Seppo Honkapohja, 2009. "Robust Learning Stability with Operational Monetary Policy Rules," Central Banking, Analysis, and Economic Policies Book Series, in: Klaus Schmidt-Hebbel & Carl E. Walsh & Norman Loayza (Series Editor) & Klaus Schmidt-Hebbel (Series (ed.),Monetary Policy under Uncertainty and Learning, edition 1, volume 13, chapter 5, pages 145-170, Central Bank of Chile.
    15. Lehtonen, Heikki & Kujala, Sanna, 2007. "Climate change impacts on crop risks and agricultural production in Finland," 101st Seminar, July 5-6, 2007, Berlin Germany 9259, European Association of Agricultural Economists.
    16. Michael Pomerleano, 2011. "Developing Regional Financial Markets – the Case of East Asia," Chapters, in: Ulrich Volz (ed.), Regional Integration, Economic Development and Global Governance, chapter 9, Edward Elgar Publishing.
    17. Gary Charness & Francesco Feri & Miguel A. Meléndez-Jiménez & Matthias Sutter, 2023. "An Experimental Study on the Effects of Communication, Credibility, and Clustering in Network Games," The Review of Economics and Statistics, MIT Press, vol. 105(6), pages 1530-1543, November.
    18. Kitsul, Yuriy & Wright, Jonathan H., 2013. "The economics of options-implied inflation probability density functions," Journal of Financial Economics, Elsevier, vol. 110(3), pages 696-711.
    19. Dieter Balkenborg & Rosemarie Nagel, 2016. "An Experiment on Forward vs. Backward Induction: How Fairness and Level k Reasoning Matter," German Economic Review, Verein für Socialpolitik, vol. 17(3), pages 378-408, August.
    20. J. Park & T. P. Seager & P. S. C. Rao & M. Convertino & I. Linkov, 2013. "Integrating Risk and Resilience Approaches to Catastrophe Management in Engineering Systems," Risk Analysis, John Wiley & Sons, vol. 33(3), pages 356-367, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:8:y:2016:i:4:p:53-:d:82634. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.