IDEAS home Printed from https://ideas.repec.org/a/gam/jftint/v17y2025i9p405-d1743137.html
   My bibliography  Save this article

1D-CNN-Based Performance Prediction in IRS-Enabled IoT Networks for 6G Autonomous Vehicle Applications

Author

Listed:
  • Radwa Ahmed Osman

    (Basic and Applied Science Institute, College of Engineering, Arab Academy for Science, Technology and Maritime Transport, Alexandria P.O. Box 1029, Egypt)

Abstract

To foster the performance of wireless communication while saving energy, the integration of Intelligent Reflecting Surfaces (IRS) into autonomous vehicle (AV) communication networks is considered a powerful technique. This paper proposes a novel IRS-assisted vehicular communication model that combines Lagrange optimization and Gradient-Based Phase Optimization to determine the optimal transmission power, optimal interference transmission power, and IRS phase shifts. Additionally, the proposed model help increase the Signal-to-Interference-plus-Noise Ratio (SINR) by utilizing IRS, which leads to maximizes energy efficiency and the achievable data rate under a variety of environmental conditions, while guaranteeing that resource limits are satisfied. In order to represent dense vehicular environments, practical constraints for the system model, such as IRS reflection efficiency and interference, have been incorporated from multiple sources, namely, Device-to-Device (D2D), Vehicle-to-Vehicle (V2V), Vehicle-to-Base Station (V2B), and Cellular User Equipment (CUE). A Lagrangian optimization approach has been implemented to determine the required transmission interference power and the best IRS phase designs in order to enhance the system performance. Consequently, a one-dimensional convolutional neural network has been implemented for the optimized data provided by this framework as training input. This deep learning algorithm learns to predict the required optimal IRS settings quickly, allowing for real-time adaptation in dynamic wireless environments. The obtained results from the simulation show that the combined optimization and prediction strategy considerably enhances the system reliability and energy efficiency over baseline techniques. This study lays a solid foundation for implementing IRS-assisted AV networks in real-world settings, hence facilitating the development of next-generation vehicular communication systems that are both performance-driven and energy-efficient.

Suggested Citation

  • Radwa Ahmed Osman, 2025. "1D-CNN-Based Performance Prediction in IRS-Enabled IoT Networks for 6G Autonomous Vehicle Applications," Future Internet, MDPI, vol. 17(9), pages 1-28, September.
  • Handle: RePEc:gam:jftint:v:17:y:2025:i:9:p:405-:d:1743137
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1999-5903/17/9/405/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1999-5903/17/9/405/
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:17:y:2025:i:9:p:405-:d:1743137. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.