Author
Listed:
- Jian Tang
(China International Water & Electric Corp., Beijing 101116, China)
- Zhao Huang
(China International Water & Electric Corp., Beijing 101116, China)
- Chunqiang Li
(Computer School, Beijing Information Science & Technology University, Beijing 100101, China)
Abstract
The rising frequency of network intrusions has significantly impacted critical infrastructures, leading to an increased focus on the detection of malicious network traffic in recent years. However, traditional port-based and classical machine learning-based malicious network traffic detection methods suffer from a dependence on expert experience and limited generalizability. In this paper, we propose a malicious traffic detection method based on an efficient federated learning framework of Bidirectional Encoder Representations from Transformers (BERT), called MT-FBERT. It offers two major advantages over most existing approaches. First, MT-FBERT pretrains BERT using two pre-training tasks along with an overall pre-training loss on large-scale unlabeled network traffic, allowing the model to automatically learn generalized traffic representations, which do not require human experience to extract the behavior features or label the malicious samples. Second, MT-FBERT finetunes BERT for malicious network traffic detection through an efficient federated learning framework, which both protects the data privacy of critical infrastructures and reduces resource consumption by dynamically identifying and updating only the most significant neurons in the global model. Evaluation experiments on public datasets demonstrated that MT-FBERT outperforms state-of-the-art baselines in malicious network traffic detection.
Suggested Citation
Jian Tang & Zhao Huang & Chunqiang Li, 2025.
"MT-FBERT: Malicious Traffic Detection Based on Efficient Federated Learning of BERT,"
Future Internet, MDPI, vol. 17(8), pages 1-22, July.
Handle:
RePEc:gam:jftint:v:17:y:2025:i:8:p:323-:d:1707657
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:17:y:2025:i:8:p:323-:d:1707657. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.